EDUCBA

EDUCBA

MENUMENU
  • Free Tutorials
  • Free Courses
  • Certification Courses
  • 360+ Courses All in One Bundle
  • Login

Hadoop vs Cassandra

By Priya PedamkarPriya Pedamkar

Home » Data Science » Data Science Tutorials » Head to Head Differences Tutorial » Hadoop vs Cassandra

Hadoop vs cassandra

Difference Between Hadoop and Cassandra

Hadoop is an open source software which is designed to handle parallel processing and mostly used as a data warehouse for voluminous of data. A core of Hadoop is HDFS (Hadoop distributed file system) which is based on Map-reduce. Through Map-reduce, data is made to process in parallel, in multiple CPU nodes. That means running heavy application is no more a challenge, as this could be run on multiple nodes in a cluster. Let’s explore the Map-reduce. Actually, these are two different tasks :
1. Map: It is a task, which takes the input data and breaks it down into a key-value pair, that we call tuples.
2. Reduce: After map task completes its work. It is then given to reduce to perform an even smaller set of tuples.
Reduce always gets performed after map task. The map-reduce framework consists of a single master JobTracker and one slave TaskTracker, per cluster-node. HDFS consists of a single NameNode, which manages the file system metadata and one or more slave that are known as DataNodes, which are responsible to store the actual data.

Cassandra is NoSQL database which is designed for high speed, online transactional data. The specialty of Cassandra lies in the fact, that it works without a single point of failure.
Cassandra uses gossip protocol, to keep the updated status of surrounding nodes in the cluster. In case one node goes down, another node takes its responsibility, till the time failed node is not up. All gossip messages possess a version associated with it, so when the nodes exchange the gossip, older information gets overwritten by a newer version of gossip.
Cassandra supports unstructured data with a flexible schema.

Start Your Free Data Science Course

Hadoop, Data Science, Statistics & others

Head to Head Comparison between Hadoop vs Cassandra (Infographics)

Below is the top 17  difference between Hadoop and Cassandra:

Hadoop vs Cassandra Infographics

Key Differences between Hadoop and Cassandra

Below are the lists of points, describe the key differences between Hadoop and Cassandra:

1. Hadoop has distributed filesystem which is designed for parallel data processing, while Cassandra is NoSQL database for speedy online transactions.
2. Hadoop is for preferred for massive data batch processing, whereas Cassandra is preferred for real-time processing.
3. Hadoop works on master-slave architecture, whereas Cassandra works on peer to peer communication.

Hadoop vs Cassandra Comparison Table

Below is the key comparison between Hadoop and Cassandra.

Basis of Comparison Hadoop Cassandra
Definition Big data processing framework. It is distributed NoSQL database, designed for managing the huge amount of data. Here NoSQL means it’s not like a conventional database. It is more like hashmap/hashtable which stores data, in a key-value pair.
Supported Format Any kind of data can be handled by Hadoop – structured, semi-structured, unstructured or images. Cassandra also can handle almost all structured, semi-structured, unstructured datasets but not the images. However, Cassandra is known to best perform on a semi-structured dataset.
Usage Hadoop is preferred for batch processing of data. Cassandra is mostly considered for real-time processing.
Work Core of Hadoop is HDFS, which is base for other analytical components for handling big data. Cassandra work on top HDFS.
CAP Parameters Hadoop follows CP, that is consistency and partition tolerance. Cassandra follows AP, that is availability and partition tolerance.
Communication Hadoop uses RPC/TCP and UDP for communication among nodes in a cluster. The protocol used for communication between nodes is gossip protocol. Gossip protocol keeps broadcasting the node status to its peer nodes in the cluster.
Architecture Hadoop follows master-slave architectural design. Name node works as Master, while data node works as a slave. Cassandra follows distributed architecture with peer to peer communication between nodes. All nodes are designed to play the same role in a cluster. Each node is independent, while at the same time connected with other nodes in the cluster.
Data Access Mode It used map-reduce to read/write. This uses Cassandra query language.
Metadata Storage Hadoop possesses centralized metadata server. Cassandra possess ‘inode’ column family in order to store metadata information
Fault Tolerance Hadoop is vulnerable to failure. If master node goes down, everything goes for a toss. As Cassandra doesn’t have a master-slave concept and all nodes has the same value. In case failure of any node, rest of the nodes in a cluster can handle the request easily.
Data Compression Hadoop can compress files 10-15 % with the best available techniques. Cassandra can compress files till 80% without any overhead.
Data Protection Data audit and access control verify the appropriate user/group permission. Data is protected in Cassandra with commit log design. Build in security like backup and restore mechanisms plays an important role.
Latency Hadoop reading time range can vary from hundreds of milliseconds (in the worst case) to tens of milliseconds (in the best case). Write latency is comparatively less than reading, because of a large number of nodes. Cassandra is based on NoSQL, hence its latency is less. It read/write functions are fast.
Indexing Indexing is very difficult in Hadoop. Indexing is simple in Cassandra because data is stored in a key-value pair.
Data Flow In Hadoop, data is directly written to the data node. In Cassandra, data is first written to memory, in memory structure format which is known as mem-table. Once that is full, it is written to disk.
Data Storage Model HDFS is the file system in Hadoop. Large files are broken into chunks and then replicated to many nodes. Keys space column family is the concept followed by Cassandra to store the data. It introduces primary and secondary indexes for high availability of data.
Replication Factor Hadoop has a replication factor of 3 by default. A default value of replication factor in Cassandra is the number of nodes in a data center.

Conclusion

Cassandra is the right choice when it comes to scalability, high availability, low latency without compromising on performance.
However, Hadoop is a great one when data storage, data searching, data analysis and data reporting of voluminous data needs to be done. Hadoop is not suggestible for real-time analytics.
Hadoop along with Cassandra can be a good technology to perform two activities parallelly:
1. Analysis of data generated through a web, mobile etc.
2. Serving the online request instantly.
This can lead to more faster and deeper extraction of insights with less time. Big data will keep on growing, and hence the technology like Hadoop, Cassandra will always be kept on updating and ruling this big data world.

Popular Course in this category
Sale
Hadoop Training Program (20 Courses, 14+ Projects, 4 Quizzes)20 Online Courses | 14 Hands-on Projects | 135+ Hours | Verifiable Certificate of Completion | Lifetime Access | 4 Quizzes with Solutions
4.5 (9,630 ratings)
Course Price

View Course

Related Courses
Data Scientist Training (85 Courses, 67+ Projects)Tableau Training (7 Courses, 8+ Projects)Azure Training (6 Courses, 5 Projects, 4 Quizzes)Data Visualization Training (15 Courses, 5+ Projects)All in One Data Science Bundle (360+ Courses, 50+ projects)

Recommended Articles

This has been a guide to Difference between Hadoop vs Cassandra. Here we have discussed Hadoop vs Cassandra head to head comparison, key difference along with infographics and comparison table. You may also look at the following articles to learn more –

  1. Find Out The 8 Amazing Difference Between Talend vs SSIS
  2. Data Science vs Artificial Intelligence – 9 Awesome Comparison
  3. Best 7 Differences Between Supervised Learning vs Unsupervised Learning
  4. Text Mining vs Text Analytics – Which One Is Better
  5. Hadoop vs Spark: Differences
  6. Introduction of User Datagram Protocol

Hadoop Training Program (20 Courses, 14+ Projects)

20 Online Courses

14 Hands-on Projects

135+ Hours

Verifiable Certificate of Completion

Lifetime Access

4 Quizzes with Solutions

Learn More

2 Shares
Share
Tweet
Share
Primary Sidebar
Head to Head Differences Tutorial
  • Differences Tutorial
    • ArangoDB vs MongoDB
    • Cloud Computing vs Big Data Analytics
    • PostgreSQL vs MariaDB
    • Domo vs Tableau
    • Data Scientist vs Data Engineer vs Statistician
    • Big Data Vs Machine Learning
    • Business Intelligence vs Data Warehouse
    • Apache Kafka vs Flume
    • Data Science vs Machine Learning
    • Business Analytics Vs Predictive Analytics
    • Data mining vs Web mining
    • Data Science Vs Data Mining
    • Data Science Vs Business Analytics
    • Analyst vs Associate
    • Apache Hive vs Apache Spark SQL
    • Apache Nifi vs Apache Spark
    • Apache Spark vs Apache Flink
    • Apache Storm vs Kafka
    • Artificial Intelligence vs Business Intelligence
    • Artificial Intelligence vs Human Intelligence
    • Al vs ML vs Deep Learning
    • Assembly Language vs Machine Language
    • AWS vs AZURE
    • AWS vs Azure vs Google Cloud
    • Big Data vs Data Mining
    • Big Data vs Data Science
    • Big Data vs Data Warehouse
    • Blu-Ray vs DVD
    • Business Intelligence vs Big Data
    • Business Intelligence vs Business Analytics
    • Business Intelligence vs Data analytics
    • Business Intelligence VS Data Mining
    • Business Intelligence vs Machine Learning
    • Business Process Re-Engineering vs CI
    • Cassandra vs Elasticsearch
    • Cassandra vs Redis
    • Cloud Computing Public vs Private
    • Cloud Computing vs Fog Computing
    • Cloud Computing vs Grid Computing
    • Cloud Computing vs Hadoop
    • Computer Network vs Data Communication
    • Computer Science vs Data Science
    • Computer Scientist vs Data Scientist
    • Customer Analytics vs Web Analytics
    • Data Analyst vs Data Scientist
    • Data Analytics vs Business Analytics
    • Data Analytics vs Data Analysis
    • Data Analytics Vs Predictive Analytics
    • Data Lake vs Data Warehouse
    • Data Mining Vs Data Visualization
    • Data mining vs Machine learning
    • Data Mining Vs Statistics
    • Data Mining vs Text Mining
    • Data Science vs Artificial Intelligence
    • Data science vs Business intelligence
    • Data Science Vs Data Engineering
    • Data Science vs Data Visualization
    • Data Science vs Software Engineering
    • Data Scientist vs Big Data
    • Data Scientist vs Business Analyst
    • Data Scientist vs Data Engineer
    • Data Scientist vs Data Mining
    • Data Scientist vs Machine Learning
    • Data Scientist vs Software Engineer
    • Data visualisation vs Data analytics
    • Data vs Information
    • Data Warehouse vs Data Mart
    • Data Warehouse vs Database
    • Data Warehouse vs Hadoop
    • Data Warehousing VS Data Mining
    • DBMS vs RDBMS
    • Deep Learning vs Machine learning
    • Digital Analytics vs Digital Marketing
    • Digital Ocean vs AWS
    • DOS vs Windows
    • ETL vs ELT
    • Small Data Vs Big Data
    • Apache Hadoop vs Apache Storm
    • Hadoop vs HBase
    • Between Data Science vs Web Development
    • Hadoop vs MapReduce
    • Hadoop Vs SQL
    • Google Analytics vs Mixpanel
    • Google Analytics Vs Piwik
    • Google Cloud vs AWS
    • Hadoop vs Apache Spark
    • Hadoop vs Cassandra
    • Hadoop vs Elasticsearch
    • Hadoop vs Hive
    • Hadoop vs MongoDB
    • HADOOP vs RDBMS
    • Hadoop vs Spark
    • Hadoop vs Splunk
    • Hadoop vs SQL Performance
    • Hadoop vs Teradata
    • HBase vs HDFS
    • Hive VS HUE
    • Hive vs Impala
    • JDBC vs ODBC
    • Kafka vs Kinesis
    • Kafka vs Spark
    • Cloud Computing vs Data Analytics
    • Data Mining Vs Data Analysis
    • Data Science vs Statistics
    • Big Data Vs Predictive Analytics
    • MapReduce vs Yarn
    • Hadoop vs Redshift
    • Looker vs Tableau
    • Machine Learning vs Artificial Intelligence
    • Machine Learning vs Neural Network
    • Machine Learning vs Predictive Analytics
    • Machine Learning vs Predictive Modelling
    • Machine Learning vs Statistics
    • MariaDB vs MySQL
    • Mathematica vs Matlab
    • Matlab vs Octave
    • MATLAB vs R
    • MongoDB vs Cassandra
    • MongoDB vs DynamoDB
    • MongoDB vs HBase
    • MongoDB vs Oracle
    • MongoDB vs Postgres
    • MongoDB vs PostgreSQL
    • MongoDB vs SQL
    • MongoDB vs SQL server
    • MS SQL vs MYSQL
    • MySQL vs MongoDB
    • MySQL vs MySQLi
    • MySQL vs NoSQL
    • MySQL vs SQL Server
    • MySQL vs SQLite
    • Neural Networks vs Deep Learning
    • PIG vs MapReduce
    • Pig vs Spark
    • PL SQL vs SQL
    • Power BI Dashboard vs Report
    • Power BI vs Excel
    • Power BI vs QlikView
    • Power BI vs SSRS
    • Power BI vs Tableau
    • Power BI vs Tableau vs Qlik
    • PowerShell vs Bash
    • PowerShell vs CMD
    • PowerShell vs Command Prompt
    • PowerShell vs Python
    • Predictive Analysis vs Forecasting
    • Predictive Analytics vs Data Mining
    • Predictive Analytics vs Data Science
    • Predictive Analytics vs Descriptive Analytics
    • Predictive Analytics vs Statistics
    • Predictive Modeling vs Predictive Analytics
    • Private Cloud vs Public Cloud
    • Regression vs ANOVA
    • Regression vs Classification
    • ROLAP vs MOLAP
    • ROLAP vs MOLAP vs HOLAP
    • Spark SQL vs Presto
    • Splunk vs Elastic Search
    • Splunk vs Nagios
    • Splunk vs Spark
    • Splunk vs Tableau
    • Spring Cloud vs Spring Boot
    • Spring vs Hibernate
    • Spring vs Spring Boot
    • Spring vs Struts
    • SQL Server vs PostgreSQL
    • Sqoop vs Flume
    • Statistics vs Machine learning
    • Supervised Learning vs Deep Learning
    • Supervised Learning vs Reinforcement Learning
    • Supervised Learning vs Unsupervised Learning
    • Tableau vs Domo
    • Tableau vs Microstrategy
    • Tableau vs Power BI vs QlikView
    • Tableau vs QlikView
    • Tableau vs Spotfire
    • Talend Vs Informatica PowerCenter
    • Talend vs Mulesoft
    • Talend vs Pentaho
    • Talend vs SSIS
    • TensorFlow vs Caffe
    • Tensorflow vs Pytorch
    • TensorFlow vs Spark
    • TeraData vs Oracle
    • Text Mining vs Natural Language Processing
    • Text Mining vs Text Analytics
    • Cloud Computing vs Virtualization
    • Unit Test vs Integration Test?
    • Universal analytics vs Google Analytics
    • Visual Analytics vs Tableau
    • R vs Python
    • R vs SPSS
    • Star Schema vs Snowflake Schema
    • DDL vs DML
    • R vs R Squared
    • ActiveMQ vs Kafka
    • TDM vs FDM
    • Linear Regression vs Logistic Regression
    • Slf4j vs Log4j
    • Redis vs Kafka
    • Travis vs Jenkins
    • Fact Table vs Dimension Table
    • OLTP vs OLAP
    • Openstack vs Virtualization
    • Cluster v/s Factor analysis
    • Informatica vs Datastage
    • CCBA vs CBAP
    • SPSS vs EXCEL
    • Excel vs Tableau
    • Cassandra vs MySQL
    • RabbitMQ vs Kafka
    • SAAS vs Cloud
    • RabbitMQ vs Redis
    • AMQP vs MQTT
    • Forward Chaining vs Backward Chaining
    • Google Data Studio vs Tableau
    • ActiveMQ vs RabbitMQ
    • Cloud vs Data Center
    • Cores vs Threads
    • Inner Join vs Outer Join
    • ZeroMQ vs Kafka
    • Mxnet vs TensorFlow
    • Redis vs Memcached
    • RDBMS vs NoSQL
    • AWS Direct Connect vs VPN
    • Cassandra vs Couchbase
    • Elegoo vs Arduino
    • Redis vs MongoDB
    • Chef vs Puppet
    • GSM vs GPRS
    • Keras vs TensorFlow vs PyTorch
    • Cloudflare vs CloudFront
    • Bitmap vs Vector
    • Left Join vs Right Join
    • IaaS vs PaaS
    • Blue Prism vs UiPath
    • GNSS vs GPS
    • Cloudflare vs Akamai
    • GCP vs AWS vs Azure
    • Arduino Mega vs Uno
    • Qualitative vs Quantitative Data
    • Arduino Micro vs Nano
    • PIC vs Arduino
    • PRTG vs Solarwinds
    • PostgreSQL vs SQLite
    • Metabase vs Tableau
    • Arduino Leonardo vs Uno
    • Arduino Due vs Mega
    • ETL Vs Database Testing
    • DBMS vs File System
    • CouchDB vs MongoDB
    • Arduino Nano vs Mini
    • IaaS vs PaaS vs SaaS
    • On-premise vs off-premise
    • Couchbase vs CouchDB
    • Tableau Dimension vs Measure
    • Cognos vs Tableau
    • Data vs Metadata
    • RethinkDB vs MongoDB
    • Cloudera vs Snowflake
    • HBase vs Cassandra
    • Business Analytics vs Business Intelligence
    • R Programming vs Python
    • MongoDB vs Hadoop
    • MySQL vs Oracle
    • OData vs GraphQL
    • Soft Computing vs Hard Computing
    • Binary Tree vs Binary Search Tree
    • Datadog vs CloudWatch
    • B tree vs Binary tree
    • Cloudera vs Hortonworks
    • DevSecOps vs DevOps
    • PostgreSQL Varchar vs Text
    • PostgreSQL Database vs schema
    • MapReduce vs spark
    • Hypervisor vs Docker
    • SciLab vs Octave
    • DocumentDB vs DynamoDB
    • PostgreSQL union vs union all
    • OrientDB vs Neo4j
    • Data visualization vs Business Intelligence
    • QlikView vs Qlik Sense
    • Neo4j vs MongoDB
    • Postgres Schema vs Database
    • Mxnet vs Pytorch
    • Naive Bayes vs Logistic Regression
    • Random Forest vs Decision Tree
    • Random Forest vs XGBoost
    • DynamoDB vs Cassandra
    • Looker vs Power BI
    • PostgreSQL vs RedShift
    • Presto vs Hive
    • Random forest vs Gradient boosting
    • Gradient boosting vs AdaBoost
    • Amazon rds vs Redshift
    • Bigquery vs Bigtable
    • Data Architect vs Data Engineer
    • DataSet vs DataTable
    • dataset vs dataframe
    • Dataset vs Database
    • New Relic vs Splunk
    • Data Architect and Management Designer
    • Data Engineer vs Data Analyst
    • Grafana vs Tableau
    • MySQL text vs Varchar
    • Relational Database vs Flat File
    • Datadog vs Prometheus
    • Neo4j vs Neptune
    • Data Mining vs Data warehousing
    • DocumentDB vs MongoDB
    • PostScript vs PCL
    • QRadar vs Splunk
    • Qlik Sense vs Tableau
    • DigitalOcean vs Google Cloud
    • PostgreSQL vs Elasticsearch
    • Redshift vs blueshift
    • Gitlab vs Azure DevOps

Related Courses

Online Data Science Course

Online Tableau Training

Azure Training Course

Hadoop Certification Course

Data Visualization Courses

All in One Data Science Course

Footer
About Us
  • Blog
  • Who is EDUCBA?
  • Sign Up
  • Live Classes
  • Corporate Training
  • Certificate from Top Institutions
  • Contact Us
  • Verifiable Certificate
  • Reviews
  • Terms and Conditions
  • Privacy Policy
  •  
Apps
  • iPhone & iPad
  • Android
Resources
  • Free Courses
  • Database Management
  • Machine Learning
  • All Tutorials
Certification Courses
  • All Courses
  • Data Science Course - All in One Bundle
  • Machine Learning Course
  • Hadoop Certification Training
  • Cloud Computing Training Course
  • R Programming Course
  • AWS Training Course
  • SAS Training Course

© 2022 - EDUCBA. ALL RIGHTS RESERVED. THE CERTIFICATION NAMES ARE THE TRADEMARKS OF THEIR RESPECTIVE OWNERS.

EDUCBA
Free Data Science Course

Hadoop, Data Science, Statistics & others

*Please provide your correct email id. Login details for this Free course will be emailed to you

By signing up, you agree to our Terms of Use and Privacy Policy.

EDUCBA
Free Data Science Course

Hadoop, Data Science, Statistics & others

*Please provide your correct email id. Login details for this Free course will be emailed to you

By signing up, you agree to our Terms of Use and Privacy Policy.

EDUCBA Login

Forgot Password?

By signing up, you agree to our Terms of Use and Privacy Policy.

Let’s Get Started

By signing up, you agree to our Terms of Use and Privacy Policy.

EDUCBA

*Please provide your correct email id. Login details for this Free course will be emailed to you

By signing up, you agree to our Terms of Use and Privacy Policy.

This website or its third-party tools use cookies, which are necessary to its functioning and required to achieve the purposes illustrated in the cookie policy. By closing this banner, scrolling this page, clicking a link or continuing to browse otherwise, you agree to our Privacy Policy

Loading . . .
Quiz
Question:

Answer:

Quiz Result
Total QuestionsCorrect AnswersWrong AnswersPercentage

Explore 1000+ varieties of Mock tests View more

Independence Day Offer - Hadoop Training Program (20 Courses, 14+ Projects) Learn More