EDUCBA

EDUCBA

MENUMENU
  • Free Tutorials
  • Free Courses
  • Certification Courses
  • 360+ Courses All in One Bundle
  • Login
Home Data Science Data Science Tutorials Head to Head Differences Tutorial Hadoop vs Apache Spark
Secondary Sidebar
Head to Head Differences Tutorial
  • Differences Tutorial
    • Scikit Learn vs TensorFlow
    • Azure Functions vs Logic Apps
    • Azure Data Factory vs Databricks
    • SHA1 vs MD5
    • Azure SQL Database vs Managed Instance
    • Azure SQL Database vs SQL Server
    • PostgreSQL vs MySQL
    • PostgreSQL vs MySQL Benchmark
    • ArangoDB vs MongoDB
    • Cloud Computing vs Big Data Analytics
    • T-SQL vs SQL
    • PostgreSQL vs MariaDB
    • Spark vs Impala
    • Datadog vs Splunk
    • Domo vs Tableau
    • Data Scientist vs Data Engineer vs Statistician
    • Big Data Vs Machine Learning
    • Predictive Analytics vs Business Intelligence
    • AI vs Machine Learning vs Deep Learning
    • Business Intelligence vs Data Warehouse
    • Apache Kafka vs Flume
    • Data Science vs Machine Learning
    • Business Analytics Vs Predictive Analytics
    • Data mining vs Web mining
    • Data Science Vs Data Mining
    • Data Science Vs Business Analytics
    • Analyst vs Associate
    • Apache Hive vs Apache Spark SQL
    • Apache Nifi vs Apache Spark
    • Apache Spark vs Apache Flink
    • Apache Storm vs Kafka
    • Artificial Intelligence vs Business Intelligence
    • Artificial Intelligence vs Human Intelligence
    • Al vs ML vs Deep Learning
    • SQL vs SQLite
    • Assembly Language vs Machine Language
    • AWS vs AZURE
    • AWS vs Azure vs Google Cloud
    • Big Data vs Data Mining
    • Big Data vs Data Science
    • Big Data vs Data Warehouse
    • Blu-Ray vs DVD
    • Business Intelligence vs Big Data
    • Business Intelligence vs Business Analytics
    • Business Intelligence vs Data analytics
    • Business Intelligence VS Data Mining
    • Business Intelligence vs Machine Learning
    • Business Process Re-Engineering vs CI
    • Cassandra vs Elasticsearch
    • Cassandra vs Redis
    • Cloud Computing Public vs Private
    • Cloud Computing vs Fog Computing
    • Cloud Computing vs Grid Computing
    • Cloud Computing vs Hadoop
    • Computer Network vs Data Communication
    • Computer Science vs Data Science
    • Computer Scientist vs Data Scientist
    • Customer Analytics vs Web Analytics
    • Data Analyst vs Data Scientist
    • Data Analytics vs Business Analytics
    • Data Analytics vs Data Analysis
    • Data Analytics Vs Predictive Analytics
    • Data Lake vs Data Warehouse
    • Data Mining Vs Data Visualization
    • Data mining vs Machine learning
    • Data Mining Vs Statistics
    • Data Mining vs Text Mining
    • Data Science vs Artificial Intelligence
    • Data science vs Business intelligence
    • Data Science Vs Data Engineering
    • Data Science vs Data Visualization
    • Data Science vs Software Engineering
    • Data Scientist vs Big Data
    • Data Scientist vs Business Analyst
    • Data Scientist vs Data Engineer
    • Data Scientist vs Data Mining
    • Data Scientist vs Machine Learning
    • Data Scientist vs Software Engineer
    • Data visualisation vs Data analytics
    • Data vs Information
    • Data Warehouse vs Data Mart
    • Data Warehouse vs Database
    • Data Warehouse vs Hadoop
    • Data Warehousing VS Data Mining
    • DBMS vs RDBMS
    • Deep Learning vs Machine learning
    • Digital Analytics vs Digital Marketing
    • Digital Ocean vs AWS
    • DOS vs Windows
    • ETL vs ELT
    • Small Data Vs Big Data
    • Apache Hadoop vs Apache Storm
    • Hadoop vs HBase
    • Between Data Science vs Web Development
    • Hadoop vs MapReduce
    • Hadoop Vs SQL
    • Google Analytics vs Mixpanel
    • Google Analytics Vs Piwik
    • Google Cloud vs AWS
    • Hadoop vs Apache Spark
    • Hadoop vs Cassandra
    • Hadoop vs Elasticsearch
    • Hadoop vs Hive
    • Hadoop vs MongoDB
    • HADOOP vs RDBMS
    • Hadoop vs Spark
    • Hadoop vs Splunk
    • Hadoop vs SQL Performance
    • Hadoop vs Teradata
    • HBase vs HDFS
    • Hive VS HUE
    • Hive vs Impala
    • JDBC vs ODBC
    • Kafka vs Kinesis
    • Kafka vs Spark
    • Cloud Computing vs Data Analytics
    • Data Mining Vs Data Analysis
    • Data Science vs Statistics
    • Big Data Vs Predictive Analytics
    • MapReduce vs Yarn
    • Hadoop vs Redshift
    • Looker vs Tableau
    • Machine Learning vs Artificial Intelligence
    • Machine Learning vs Neural Network
    • Machine Learning vs Predictive Analytics
    • Machine Learning vs Predictive Modelling
    • Machine Learning vs Statistics
    • MariaDB vs MySQL
    • Mathematica vs Matlab
    • Matlab vs Octave
    • MATLAB vs R
    • MongoDB vs Cassandra
    • MongoDB vs DynamoDB
    • MongoDB vs HBase
    • MongoDB vs Oracle
    • MongoDB vs Postgres
    • MongoDB vs PostgreSQL
    • MongoDB vs SQL
    • MongoDB vs SQL server
    • MS SQL vs MYSQL
    • MySQL vs MongoDB
    • MySQL vs MySQLi
    • MySQL vs NoSQL
    • MySQL vs SQL Server
    • MySQL vs SQLite
    • Neural Networks vs Deep Learning
    • PIG vs MapReduce
    • Pig vs Spark
    • PL SQL vs SQL
    • Power BI Dashboard vs Report
    • Power BI vs Excel
    • Power BI vs QlikView
    • Power BI vs SSRS
    • Power BI vs Tableau
    • Power BI vs Tableau vs Qlik
    • PowerShell vs Bash
    • PowerShell vs CMD
    • PowerShell vs Command Prompt
    • PowerShell vs Python
    • Predictive Analysis vs Forecasting
    • Predictive Analytics vs Data Mining
    • Predictive Analytics vs Data Science
    • Predictive Analytics vs Descriptive Analytics
    • Predictive Analytics vs Statistics
    • Predictive Modeling vs Predictive Analytics
    • Private Cloud vs Public Cloud
    • Regression vs ANOVA
    • Regression vs Classification
    • ROLAP vs MOLAP
    • ROLAP vs MOLAP vs HOLAP
    • Spark SQL vs Presto
    • Splunk vs Elastic Search
    • Splunk vs Nagios
    • Splunk vs Spark
    • Splunk vs Tableau
    • Spring Cloud vs Spring Boot
    • Spring vs Hibernate
    • Spring vs Spring Boot
    • Spring vs Struts
    • SQL Server vs PostgreSQL
    • Sqoop vs Flume
    • Statistics vs Machine learning
    • Supervised Learning vs Deep Learning
    • Supervised Learning vs Reinforcement Learning
    • Supervised Learning vs Unsupervised Learning
    • Tableau vs Domo
    • Tableau vs Microstrategy
    • Tableau vs Power BI vs QlikView
    • Tableau vs QlikView
    • Tableau vs Spotfire
    • Talend Vs Informatica PowerCenter
    • Talend vs Mulesoft
    • Talend vs Pentaho
    • Talend vs SSIS
    • TensorFlow vs Caffe
    • Tensorflow vs Pytorch
    • TensorFlow vs Spark
    • TeraData vs Oracle
    • Text Mining vs Natural Language Processing
    • Text Mining vs Text Analytics
    • Cloud Computing vs Virtualization
    • Unit Test vs Integration Test?
    • Universal analytics vs Google Analytics
    • Visual Analytics vs Tableau
    • R vs Python
    • R vs SPSS
    • Star Schema vs Snowflake Schema
    • DDL vs DML
    • R vs R Squared
    • ActiveMQ vs Kafka
    • TDM vs FDM
    • Linear Regression vs Logistic Regression
    • Slf4j vs Log4j
    • Redis vs Kafka
    • Travis vs Jenkins
    • Fact Table vs Dimension Table
    • OLTP vs OLAP
    • Openstack vs Virtualization
    • Cluster v/s Factor analysis
    • Informatica vs Datastage
    • CCBA vs CBAP
    • SPSS vs EXCEL
    • Excel vs Tableau
    • Cassandra vs MySQL
    • RabbitMQ vs Kafka
    • SAAS vs Cloud
    • RabbitMQ vs Redis
    • AMQP vs MQTT
    • Forward Chaining vs Backward Chaining
    • Google Data Studio vs Tableau
    • ActiveMQ vs RabbitMQ
    • Cloud vs Data Center
    • Cores vs Threads
    • Inner Join vs Outer Join
    • ZeroMQ vs Kafka
    • Mxnet vs TensorFlow
    • Redis vs Memcached
    • RDBMS vs NoSQL
    • AWS Direct Connect vs VPN
    • Cassandra vs Couchbase
    • Elegoo vs Arduino
    • Redis vs MongoDB
    • Chef vs Puppet
    • GSM vs GPRS
    • Keras vs TensorFlow vs PyTorch
    • Cloudflare vs CloudFront
    • Bitmap vs Vector
    • Left Join vs Right Join
    • IaaS vs PaaS
    • Blue Prism vs UiPath
    • GNSS vs GPS
    • Cloudflare vs Akamai
    • GCP vs AWS vs Azure
    • Arduino Mega vs Uno
    • Qualitative vs Quantitative Data
    • Arduino Micro vs Nano
    • PIC vs Arduino
    • PRTG vs Solarwinds
    • PostgreSQL vs SQLite
    • Metabase vs Tableau
    • Arduino Leonardo vs Uno
    • Arduino Due vs Mega
    • ETL Vs Database Testing
    • DBMS vs File System
    • CouchDB vs MongoDB
    • Arduino Nano vs Mini
    • IaaS vs PaaS vs SaaS
    • On-premise vs off-premise
    • Couchbase vs CouchDB
    • Tableau Dimension vs Measure
    • Cognos vs Tableau
    • Data vs Metadata
    • RethinkDB vs MongoDB
    • Cloudera vs Snowflake
    • HBase vs Cassandra
    • Business Analytics vs Business Intelligence
    • R Programming vs Python
    • MongoDB vs Hadoop
    • MySQL vs Oracle
    • OData vs GraphQL
    • Soft Computing vs Hard Computing
    • Binary Tree vs Binary Search Tree
    • Datadog vs CloudWatch
    • B tree vs Binary tree
    • Cloudera vs Hortonworks
    • DevSecOps vs DevOps
    • PostgreSQL Varchar vs Text
    • PostgreSQL Database vs schema
    • MapReduce vs spark
    • Hypervisor vs Docker
    • SciLab vs Octave
    • DocumentDB vs DynamoDB
    • PostgreSQL union vs union all
    • OrientDB vs Neo4j
    • Data visualization vs Business Intelligence
    • QlikView vs Qlik Sense
    • Neo4j vs MongoDB
    • Postgres Schema vs Database
    • Mxnet vs Pytorch
    • Naive Bayes vs Logistic Regression
    • Random Forest vs Decision Tree
    • Random Forest vs XGBoost
    • DynamoDB vs Cassandra
    • Looker vs Power BI
    • PostgreSQL vs RedShift
    • Presto vs Hive
    • Random forest vs Gradient boosting
    • Gradient boosting vs AdaBoost
    • Amazon rds vs Redshift
    • Bigquery vs Bigtable
    • Data Architect vs Data Engineer
    • DataSet vs DataTable
    • dataset vs dataframe
    • Dataset vs Database
    • New Relic vs Splunk
    • Data Architect and Management Designer
    • Data Engineer vs Data Analyst
    • Grafana vs Tableau
    • MySQL text vs Varchar
    • Relational Database vs Flat File
    • Datadog vs Prometheus
    • Neo4j vs Neptune
    • Data Mining vs Data warehousing
    • DocumentDB vs MongoDB
    • PostScript vs PCL
    • QRadar vs Splunk
    • Qlik Sense vs Tableau
    • DigitalOcean vs Google Cloud
    • PostgreSQL vs Elasticsearch
    • Redshift vs blueshift
    • Gitlab vs Azure DevOps

Related Courses

Online Data Science Course

Online Tableau Training

Azure Training Course

Hadoop Certification Course

Data Visualization Courses

All in One Data Science Course

Hadoop vs Apache Spark

By Priya PedamkarPriya Pedamkar

Hadoop vs Apache Spark

Difference Between Hadoop vs Apache Spark

Hadoop vs Apache Spark is a big data framework and contains some of the most popular tools and techniques that brands can use to conduct big data-related tasks. Apache Spark, on the other hand, is an open-source cluster computing framework. While Hadoop vs Apache Spark might seem like competitors, they do not perform the same tasks and in some situations can even work together. While it is reported that Spark can function more than 100 times faster than Hadoop in some case scenarios, it does not have its own storage system. This is an important criterion as distributed storage is one of the most important aspects of data projects.

So what exactly is Big Data?

Big data is a big buzzword that helps organizations and companies to make sense of large amounts of data. It has received a lot of attention in the past decade and in simple terms, it is defined as big data that is so large for a company that it cannot be processed using conventional sources. Newer tools are being developed daily so that companies can start to make sense of this growing amount of data. That is why big data is one of the biggest technological trends that will affect the outcomes of brands and companies all over the globe.

spark vs hadoop

 What is the size of Big Data and how fast is this sector growing?

Technology has always played an integral part in the functioning of brands and companies around the world. This is because technology helps companies to increase their profits and productivity in an effective fashion. For instance, in his presentation, Keg Kruger has described how the US census made use of the Hollerith Tabulating System where a lot of data had to be tabulated in a mechanical manner. To deal with the massive amount of data, Hollerith was combined with three other companies to form the Computing Tabulating Recording Corporation, which is today called IBM or the International Business Machines.

Start Your Free Data Science Course

Hadoop, Data Science, Statistics & others

Data is measured in bytes which is a unit that is used to measure digital information. In the field, 8 bits is equal to one byte. From gigabytes to petabytes, the world of big data is expanding. Some values of data are called gigabyte, terabyte, petabyte and exabyte among others.

To put things into perspective, one gigabyte is equal to 1024 megabytes which is data that is stored in a single DVD while one petabyte is the amount of data stored on CDs about 2 miles high or worth 13 years of HD TV video while one exabyte is equal to one billion gigabytes.

All in One Data Science Bundle(360+ Courses, 50+ projects)
Python TutorialMachine LearningAWSArtificial Intelligence
TableauR ProgrammingPowerBIDeep Learning
Price
View Courses
360+ Online Courses | 50+ projects | 1500+ Hours | Verifiable Certificates | Lifetime Access
4.7 (86,650 ratings)

Some of the major characteristics of Big Data can be mentioned below:

  1. The volume of data: The quantity of data is one of the biggest characteristics of Big data. When the size and potential of data are large, there are more chances of them being qualified at being called big data. The name Big Data itself contains the word and that itself is a characteristic of the size.
  2. Variety of data: Another characteristic of Big data is the variety. It is also important that data analysis needs to be conducted on the said data. In addition, it is also important that analysts are able to use the said data to draw valuable insights that can, in turn, help the company to achieve its goals and objectives.
  3. The velocity of data: Here the term velocity refers to the speed at which data is generated and processed. This is extremely important because the speed at which data is processed plays a major role in helping companies to achieve their goals. The faster the data is processed the faster companies will be able to reach the next stage of development in an effective fashion.
  4. Variability: Another feature of Big data is variability. This means that data has to manage in ineffective fashion so that there is no inconsistency in them. An inconsistency of data has to be handled in an effective manner so that it does not affect the quality of data at any stage.
  5. Complex nature of data: Companies and brands today manage tonnes of data that come from multiple sources. These data need to be linked, connected and correlated so that companies can make sense of these insights and use them to make effective campaigns and plans. That is why complexity is one of the most integral features of big data.

It is, therefore, no surprise that big data is one of the biggest factors to influence the functioning of companies across many forms. In many industries, both accomplished companies and startups are using the power of big data to create solutions that are innovative and competitive. For example, the healthcare industry has greatly benefitted from the use of big data solutions. In this industry, data pioneers are effectively analyzing the outcomes of medical trials and thereby discovering new benefits and risks of medicines and vaccines. These trials that use big data solutions are on a much more large-scale than clinical trials, thereby allowing the healthcare industry to expand their potential and harass unlimited opportunities in an effective fashion. Other industries are also slowly waking up to this and there is increased adoption of data techniques from companies of all sizes and sectors. Such knowledge is allowing brands to not just offer new and innovative products to their current audience but also create innovative designs for future use.

Many organizations are today in the middle of a lot of information flows where data about products and services, buyers and sellers, consumers’ intents among others must be studied in a proper manner. If brands want to survive in the future markets, then they must be able to use the capabilities offered by Big data in a fashion that is effective and successful. One of the most important aspects of big data adoption is the framework that companies would like to adopt for their use. Two of the most popular big data framework that exists in the market include Hadoop and Spark. While Spark has overtaken Hadoop as the most active open-source, both these frameworks are used by multiple companies across sectors. While the comparison between Hadoop vs Apache Spark is not really possible, both of these systems have some very similar uses and functions.

Hadoop vs Apache Spark Infographics

Below is the top 6 Comparisons between Hadoop vs Apache Spark

Hadoop vs Apache Spark infographics

Both Hadoop vs Apache Spark is a big data framework and contains some of the most popular tools and techniques that brands can use to conduct big data-related tasks.

Created by Doug Cutting and Mike Cafarella, Hadoop was created in the year 2006. At that time, it was developed to support distribution for the Nutch search engine project. It later became one of the most important big data frameworks and until recently it dominated the market as a major player. Apache Spark, on the other hand, is an open-source cluster computing framework that was developed at the AMPLab in California. Later it was donated to the Apache Software Foundation, where it remains today. n February 2014, Spark became a top-level Apache project and later in November of the same year, the engineering team at Databricks set a new record in large able sorting with the use of Spark framework. Both Hadoop vs Apache Spark is an extremely popular data framework that is used by multiple companies and is competing with each other for more space in the market.

While Hadoop vs Apache Spark might seem like competitors, they do not perform the same tasks and in some situations can even work together. While it is reported that Spark can function more than 100 times faster than Hadoop in some case scenarios, it does not have its own storage system. This is an important criterion as distributed storage is one of the most important aspects of data projects. This is because data storage framework allows data to be stored in multi-PETA datasets that in turn can be stored on an infinite number of hard drives, making it extremely cost-effective. Additionally, data frameworks must be scalable in nature so that more drivers can be added to the network as and when the size of data increases. As Spark does not have its own system for data storage, this framework requires one that is provided by another party. That is why for many Big Data projects, companies that install Spark for advanced analytics application, usually also make use of Hadoop Distributed file system for data storage.

Speed is, therefore, the one thing that gives Spark an extra edge over Hadoop. Because Spark handles its functions by copying them from distributed physical storage. Because there are no slow clunky mechanical hard drives in Spark, the speed in which it can perform its functions in comparison to Hadoop is faster. In case of Hadoop, data is written is saved in Hadoop’s MapReduce System which also writes all the data back to the physical storage medium after every function. This copying of data was done so that a full recovery was possible in case something went wrong during the process. As data stored in an electronic manner is more volatile, this was considered important. In case of Spark system, data is arranged in a system called resilient distributed datasets that can be recovered in case something goes wrong during the big data process.

Another thing that sets Spark ahead of Hadoop is that Spark is able to process tasks in the real-time and has advanced machine learning. Real-time processing means that data can be entered into an analytical application the moment it is known, and insights can be immediately gained. This means that immediate actions can be taken on those insights, thereby allowing companies to take advantage of the current opportunities. In addition, machine learnings are defined as algorithms that can think for themselves, thereby allowing them to create a solution for large sets of data. This is is the sort of technology that is at the heart of advanced industries and can help management to deal with problems before they even arise on one hand and also create innovative technology that is responsible for driverless cars and ships on the other hand.

Hadoop vs Apache Spark are therefore two different database systems and here are a few things that set them apart:

  1. Both these systems work in a different manner: Hadoop vs Apache Spark is big data frameworks that have different functions. While Hadoop is a distributed data infrastructure, which distributes huge data collection across multiple nodes. This means that users of Hadoop do not have to invest and maintain custom hardware that is extremely expensive. By indexing and keeping track of data, it allows companies to do the same in a fast and swift manner. On the other hand, Spark is a data processing tools that operate on distributed data storage but does not distribute storage.
  2. It is possible to use one system without the other: Hadoop provides users with not just a storage component (Hadoop Distributed File System) but also has a processing component called MapReduce. This means that users who purchased Hadoop need not purchase Spark for their processing needs. At the same time users of Spark, need not install anything related to Hadoop. As Spark does not have a file management system if brands need one they can integrate a cloud-based system that need not be Hadoop related.
  3. Spark is much speedier than Hadoop but not all organizations may need analytics to function at such rapid speed: MapReduce’s processing style is good but if your companies have functions that are more static, they can conduct data analytic functions through batch processing as well. However, if companies need to stream data from sensors on a factory floor or require multiple operations, it is best to invest in Spark big data software. In addition, many machine learning algorithms require multiple operations and some common applications for the Spark tool includes online product recommendation, machine monitoring, and cyber security among others.

Hadoop vs Apache Spark is really two major Big data frameworks that exist in the market today. While both Hadoop vs Apache Spark frameworks is often pitched in a battle for dominance, they still have a lot of functions that make them extremely important in their own area of influence. They work in different situations and generally tend to perform functions that are unique and distinct.

Recommended Courses

This has been a guide to Hadoop vs Apache Spark here we have discussed the era of big data is something that every brand must look at so that they can yield results in an effective fashion because the future belongs to those companies that extract value from data in a successful fashion. You may also look at the following Hadoop vs Apache Spark article to learn more –

  1. Hadoop vs Apache Spark – Interesting Things you need to know
  2. Hadoop vs Hive – Find Out The Best Differences
  3. What to prefer Hadoop or Spark
Popular Course in this category
Hadoop Training Program (20 Courses, 14+ Projects, 4 Quizzes)
  20 Online Courses |  14 Hands-on Projects |  135+ Hours |  Verifiable Certificate of Completion
4.5
Price

View Course

Related Courses

Data Scientist Training (85 Courses, 67+ Projects)4.9
Tableau Training (8 Courses, 8+ Projects)4.8
Azure Training (6 Courses, 5 Projects, 4 Quizzes)4.7
Data Visualization Training (15 Courses, 5+ Projects)4.7
All in One Data Science Bundle (360+ Courses, 50+ projects)4.7
15 Shares
Share
Tweet
Share
Primary Sidebar
Footer
About Us
  • Blog
  • Who is EDUCBA?
  • Sign Up
  • Live Classes
  • Corporate Training
  • Certificate from Top Institutions
  • Contact Us
  • Verifiable Certificate
  • Reviews
  • Terms and Conditions
  • Privacy Policy
  •  
Apps
  • iPhone & iPad
  • Android
Resources
  • Free Courses
  • Database Management
  • Machine Learning
  • All Tutorials
Certification Courses
  • All Courses
  • Data Science Course - All in One Bundle
  • Machine Learning Course
  • Hadoop Certification Training
  • Cloud Computing Training Course
  • R Programming Course
  • AWS Training Course
  • SAS Training Course

ISO 10004:2018 & ISO 9001:2015 Certified

© 2022 - EDUCBA. ALL RIGHTS RESERVED. THE CERTIFICATION NAMES ARE THE TRADEMARKS OF THEIR RESPECTIVE OWNERS.

EDUCBA
Free Data Science Course

SPSS, Data visualization with Python, Matplotlib Library, Seaborn Package

*Please provide your correct email id. Login details for this Free course will be emailed to you

By signing up, you agree to our Terms of Use and Privacy Policy.

EDUCBA Login

Forgot Password?

By signing up, you agree to our Terms of Use and Privacy Policy.

EDUCBA
Free Data Science Course

Hadoop, Data Science, Statistics & others

*Please provide your correct email id. Login details for this Free course will be emailed to you

By signing up, you agree to our Terms of Use and Privacy Policy.

EDUCBA

*Please provide your correct email id. Login details for this Free course will be emailed to you

By signing up, you agree to our Terms of Use and Privacy Policy.

Let’s Get Started

By signing up, you agree to our Terms of Use and Privacy Policy.

This website or its third-party tools use cookies, which are necessary to its functioning and required to achieve the purposes illustrated in the cookie policy. By closing this banner, scrolling this page, clicking a link or continuing to browse otherwise, you agree to our Privacy Policy

Loading . . .
Quiz
Question:

Answer:

Quiz Result
Total QuestionsCorrect AnswersWrong AnswersPercentage

Explore 1000+ varieties of Mock tests View more