• Skip to primary navigation
  • Skip to content
  • Skip to primary sidebar
  • Skip to footer
EDUCBA

EDUCBA

MENUMENU
  • Resources
        • Data & Analytics Career

          • Big Data Analytics Jobs
          • Hadoop developer interview Questions
          • Big Data Vs Machine Learning
        • Data and Analytics Career
        • Interview Questions

          • Career in Cloud Computing Technology
          • Big Data interview questions
          • Data Scientist vs Machine Learning
        • Interview Questions
        • Machine Learning

          • What is Machine Learning
          • Machine Learning Tools
          • Neural Network Algorithms
        • Head to Head Differences
        • Others

          • Resources (A-Z)
          • Data and Analytics Basics
          • Business Analytics
          • View All
  • Free Courses
  • All Courses
        • Certification Courses

          Data Science Course
        • All in One Bundle

          All-in-One-Data-Science-Bundle
        • Machine Learning Course

          Machine-Learning-Training
        • Others

          • Hadoop Certification Training
          • Cloud Computing Training Course
          • R Programming Course
          • AWS Training Course
          • SAS Training Course
          • View All
  • 360+ Courses All in One Bundle
  • Login

Neural Networks vs Deep Learning

Home » Data Science » Blog » Machine Learning » Neural Networks vs Deep Learning

Neural Networks vs Deep Learning

Difference Between Neural Networks and Deep Learning

With the huge transition in today’s technology, it takes more than just Big Data and Hadoop to transform businesses. The firms of today are moving towards AI and incorporating machine learning as their new technique. Neural networks or connectionist systems are the systems which are inspired by our biological neural network. These kinds of systems are trained to learn and adapt themselves according to the need. For example, in case of image recognition, once they are identified with cats, they can easily use that result set to separate images with cats with the ones with no cats. While doing this they do not have any prior knowledge about the characteristics of cat but they develop their own set of unique features which is helpful in their identification. Another term which is closely linked with this is deep learning also known as hierarchical learning. This is based upon learning data representations which are opposite to task-based algorithms. It can further be categorized into supervised, semi-supervised and unsupervised learning techniques. There are several architectures associated with Deep learning such as deep neural networks, belief networks and recurrent networks whose application lies with natural language processing, computer vision, speech recognition, social network filtering, audio recognition, bioinformatics, machine translation, drug design and the list goes on and on. Let us discuss Neural Networks and Deep Learning in detail in our post.

Head to Head comparison between Neural Networks vs Deep learning (Infographics)

Neural Networks vs Deep Learning

Start Your Free Data Science Course

Hadoop, Data Science, Statistics & others

Key differences between Neural Networks vs Deep learning:

The differences between Neural Networks and Deep learning are explained in the points presented below:

  1. Neural networks make use of neurons that are used to transmit data in the form of input values and output values. They are used to transfer data by using networks or connections. Deep learning, on the other hand, is related to transformation and extraction of feature which attempts to establish a relationship between stimuli and associated neural responses present in the brain.
  2. Application areas for neural networking includes system identification, natural resource management, process control, vehicle control, quantum chemistry, decision making, game playing, face identification, pattern recognition , signal classification, sequence recognition, object recognition, finance, medical diagnosis, visualization, data mining, machine translation, email spam filtering, social network filtering, etc. whereas application of deep learning includes Automatic speech recognition, Image recognition, visual art processing, Natural language processing, drug discovery and toxicology, customer relationship management, recommendation engines, Mobile advertising, bioinformatics, Image restoration etc.
  3. Criticism encountered for Neural networks include those like training issues, theoretical issues, hardware issues, practical counterexamples to criticisms, hybrid approaches whereas for deep learning it is related with theory, errors, cyber threat, etc.

Neural Networks vs Deep Learning Comparision Table

Basis for comparison Neural Networks Deep learning
Definition Class of machine learning algorithms where the artificial neuron forms the basic computational unit and networks are used to describe the interconnectivity among each other It is a class of machine learning algorithms which uses non-linear processing units’ multiple layers for feature transformation and extraction. It also represents concepts in multiple hierarchical fashions which corresponds to various levels of abstraction.
Components Neurons: Neuron which is labeled as j receives an input from predecessor neurons often in the form of identity function to provide an output.
Connections and weights: The connection is a vital component between the output neuron i and the input neuron j. Each connection is then identified by a weight ij.
Propagation function: It is used to provide an input for the resulting output.
Learning rule: It is used to modify the parameters of neural network so as to result in a favorable output.
Motherboard: The motherboard chipset is a component related to deep learning which is particularly based upon PCI-e lanes.
Processors: The kind of GPU required for Deep learning should be based upon the socket type, number of cores and cost of the processor.
RAM, physical memory, and storage: The deep learning algorithms require great CPU usage, storage, and memory area and so having a rich set of these components is a must.
PSU: With the increase in memory, CPU and storage area it also becomes important to use a large PSU enough to handle huge power.
Architecture Feed Forward Neural Networks: The commonest kind of architecture contains the first layer as the input layer while the last layer is the output layer and all the intermediary layers are the hidden layers.
Recurrent networks: This kind of architecture consists of directed cycles in the connection graph. The biologically realistic architectures can also take you back from where you started. These are complicated to train and are extremely dynamic.
Symmetrically connected networks: Symmetrical connection holding architecture which is more or less like the recurrent networks. They are restricted in nature due to their use of energy function. Symmetrically connected nets with hidden networks are known as Boltzmann machines whereas the ones without the hidden network are known as Hopfield nets.
Unsupervised Pretrained Networks: In this architecture, we talk about no formal training but the networks are pretrained using past experiences. This includes autoencoders, deep belief networks, and generative adversarial networks.
Convolutional Neural networks: It aims to learn higher order features using convolutions which betters the image recognition and identification user experience. Identification of faces, street signs, platypuses and other objects become easy using this architecture.
Recurrent neural networks: They come from the family of feedforward which beliefs in sending their information over time steps.
Recursive neural networks: It also marks variable length input. The primary difference between recurrent and recursive is that the former has the ability to a device the hierarchical structures in the training dataset while the latter also poses the information about how that hierarchical structure is maintained in the dataset.

Conclusion – Neural Networks vs Deep Learning

AI is an extremely powerful and interesting field which only will become more ubiquitous and important moving forward and will surely have huge impacts on the society as a whole. These two techniques are some of AI’s very powerful tools to solve complex problems and will continue to develop and grow in future for us to leverage them.

Recommended Article

This has been a guide to Neural Networks vs Deep Learning, their Meaning, Head to Head Comparison, Key Differences, Comparision Table, and Conclusion. You may also look at the following articles to learn more –

  1. Best 7 Difference Between Data Mining Vs Data Analysis
  2. Machine Learning vs Predictive Analytics – 7 Useful Differences
  3. Data Mining Vs Data Visualization – Which One Is Better
  4. Business Intelligence vs BigData – 6 Amazing Comparisons

Deep Learning Training (15 Courses, 4+ Projects)

15 Online Courses

13 Hands-on Projects

112+ Hours

Verifiable Certificate of Completion

Lifetime Access

Learn More

4 Shares
Share
Tweet
Share
Reader Interactions
Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

Primary Sidebar
Data Analytics Tutorials Tutorials
  • Machine Learning
    • Hierarchical Clustering Algorithm
    • IoT Technology
    • IoT Ecosystem
    • TensorFlow Architecture
    • IoT Devices
    • IoT Projects
    • What is Regression Analysis?
    • Hierarchical Clustering
    • Bagging and Boosting
    • Multivariate Regression
    • Agents in Artificial Intelligence
    • Tensorflow Basics
    • Implementation of Neural Networks
    • Intelligent Agents
    • Artificial Intelligence Techniques
    • Hierarchical Clustering Analysis
    • Clustering in Machine Learning
    • Fuzzy Logic System
    • Benefits of IoT
    • Simple Linear Regression
    • Importance of Artificial Intelligence
    • Artificial Intelligence Companies
    • Artificial Intelligence Applications
    • Hyperparameter Machine Learning
    • What is Reinforcement Learning?
    • IoT Architecture
    • Bayes Theorem
    • Advantages of DevOps
    • Data Science Machine Learning
    • Convolutional Neural Networks
    • Hierarchical Clustering in R
    • IoT Companies
    • IoT in Agriculture
    • IoT Security Issues
    • Autoencoders
    • Artificial Intelligence Software
    • IoT Analytics
    • Unsupervised Machine Learning
    • Artificial Intelligence Problems
    • Linear Regression Modeling
    • Gradient Boosting Algorithm
    • IoT Management
    • Uses of IoT
    • Types of Machine Learning Algorithms
    • Benefits of DevOps
    • How Artificial Intelligence Works?
    • Transformations in Informatica
    • IoT Module
    • Benefits of RPA
    • Tensorflow Image Classification
    • IoT Software
    • Applications of Machine Learning
    • IoT Platform
    • Router Transformation in Informatica
    • Data Science Algorithms
    • Restricted Boltzmann Machine
    • Artificial Intelligence Technology
    • Benefits of Artificial Intelligence
    • DevOps Services
    • Assembly Language vs Machine Language
    • TensorFlow Playground
    • Classification of Neural Network
    • Machine Learning Models
    • Machine Learning Platform
    • Tensorflow vs Pytorch
    • Machine Learning Methods
    • Theano vs Tensorflow
    • Machine Learning Algorithms
    • Classification Algorithms
    • Loss Functions in Machine Learning
    • Machine Learning Libraries
    • Recurrent Neural Networks (RNN)
    • Predictive Analysis vs Forecasting
    • Neural Network Algorithms
    • Predictive Analytics Tool
    • Artificial Intelligence Tools Applications
    • Data Science vs Machine Learning
    • Big Data Vs Machine Learning
    • Computer Science vs Data Science
    • Predictive Analytics vs Data Science
    • Artificial Intelligence vs Business Intelligence
    • Data science vs Business intelligence
    • Data Science Vs Data Mining
    • Computer Scientist vs Data Scientist
    • Supervised Learning vs Reinforcement Learning
    • Data Mining vs Text Mining
    • Machine Learning vs Artificial Intelligence
    • Machine Learning vs Predictive Modelling
    • Machine Learning vs Predictive Analytics
    • Machine Learning vs Neural Network
    • Artificial Intelligence vs Human Intelligence
    • Neural Networks vs Deep Learning
    • Data Science vs Artificial Intelligence
    • Business Intelligence vs Machine Learning
    • Supervised Learning vs Unsupervised Learning
    • Supervised Learning vs Deep Learning
    • Machine Learning vs Statistics
    • Data Scientist vs Machine Learning
    • Uses Of Machine Learning
    • Introduction To Machine Learning
    • Advantages of Artificial Intelligence
    • Introduction to Tensorflow
    • Introduction to Artificial Intelligence
    • What is Artificial Intelligence
    • Kubernetes Alternatives
    • Install Docker
    • How To Install TensorFlow
    • What is Neural Networks?
    • What is Natural Language Processing?
    • What is Pandas
    • What is NLP?
    • NLP in Python
    • Decision Tree Algorithm
    • Machine Learning Tools
    • Boosting Algorithm
    • Naive Bayes Algorithm
    • K- Means Clustering Algorithm
    • DevOps Tools
    • DevOps lifecycle
    • TensorFlow Alternatives
    • What is DevOps?
    • Machine Learning Frameworks
    • AdaBoost Algorithm
    • Types of Machine Learning
    • Machine Learning Architecture
    • What is Fuzzy Logic?
    • What is Kubernetes?
    • What is a Data Lake?
    • What is TensorFlow?
    • BFS Algorithm
    • Install Kubernetes Dashboard
    • DevOps Automation Tool
    • Agile vs DevOps
    • Artificial Intelligence vs Machine Learning vs Deep Learning
    • Artificial Intelligence Interview Questions
    • What Is Deep learning
    • Introduction to NLP
    • Kubernetes Operators
    • What is Machine Learning?
    • DevOps Testing Tools
    • XGBoost Algorithm
  • Big Data (151+)
  • Business Analytics (40+)
  • Cloud Computing (82+)
  • Data Analytics Basics (202+)
  • Data Analytics Careers (36+)
  • Data Mining (30+)
  • Data Visualization (88+)
  • Interview Questions (50+)
  • Statistical Analysis (36+)
  • Data Commands (4+)
  • Power Bi (6+)
Data Analytics Tutorials Courses
  • Machine Learning Training
  • Deep Learning Training
  • Artificial Intelligence Training
Footer
About Us
  • Who is EDUCBA?
  • Sign Up
  •  
Free Courses
  • Free Course on Data Science
  • Free Course on Machine Learning
  • Free Coruse on Statistics
  • Free Course on Data Analytics
Certification Courses
  • All Courses
  • Data Science Course - All in One Bundle
  • Machine Learning Course
  • Hadoop Certification Training
  • Cloud Computing Training Course
  • R Programming Course
  • AWS Training Course
  • SAS Training Course
  • Tableau Training
  • Azure Training Course
  • IoT Course
  • Minitab Training
  • SPSS Certification Course
  • Data Science with Python Course
Resources
  • Resources (A To Z)
  • Data & Analytics Career
  • Interview Questions
  • Data Visualization
  • Data and Analytics Basics
  • Cloud Computing
Apps
  • iPhone & iPad
  • Android
Support
  • Contact Us
  • Verifiable Certificate
  • Reviews
  • Terms and Conditions

© 2019 - EDUCBA. ALL RIGHTS RESERVED. THE CERTIFICATION NAMES ARE THE TRADEMARKS OF THEIR RESPECTIVE OWNERS.

EDUCBA
Free Data Science Course

Hadoop, Data Science, Statistics & others

By continuing above step, you agree to our Terms of Use and Privacy Policy.
*Please provide your correct email id. Login details for this Free course will be emailed to you
EDUCBA
Free Data Science Course

Hadoop, Data Science, Statistics & others

By continuing above step, you agree to our Terms of Use and Privacy Policy.
*Please provide your correct email id. Login details for this Free course will be emailed to you
EDUCBA
Free Data Science Course

Hadoop, Data Science, Statistics & others

By continuing above step, you agree to our Terms of Use and Privacy Policy.
*Please provide your correct email id. Login details for this Free course will be emailed to you
EDUCBA
Free Data Science Course

Hadoop, Data Science, Statistics & others

By continuing above step, you agree to our Terms of Use and Privacy Policy.
*Please provide your correct email id. Login details for this Free course will be emailed to you
EDUCBA

By continuing above step, you agree to our Terms of Use and Privacy Policy.
*Please provide your correct email id. Login details for this Free course will be emailed to you
EDUCBA Login

Forgot Password?

Let’s Get Started
Please provide your Email ID
Email ID is incorrect