EDUCBA

EDUCBA

MENUMENU
  • Free Tutorials
  • Free Courses
  • Certification Courses
  • 360+ Courses All in One Bundle
  • Login
Home Data Science Data Science Tutorials Head to Head Differences Tutorial MongoDB vs Hadoop
Secondary Sidebar
Head to Head Differences Tutorial
  • Differences Tutorial
    • Scikit Learn vs TensorFlow
    • Azure Functions vs Logic Apps
    • Azure Data Factory vs Databricks
    • SHA1 vs MD5
    • Azure SQL Database vs Managed Instance
    • Azure SQL Database vs SQL Server
    • PostgreSQL vs MySQL
    • PostgreSQL vs MySQL Benchmark
    • ArangoDB vs MongoDB
    • Cloud Computing vs Big Data Analytics
    • T-SQL vs SQL
    • PostgreSQL vs MariaDB
    • Spark vs Impala
    • Datadog vs Splunk
    • Domo vs Tableau
    • Data Scientist vs Data Engineer vs Statistician
    • Big Data Vs Machine Learning
    • Predictive Analytics vs Business Intelligence
    • AI vs Machine Learning vs Deep Learning
    • Data Science vs Artificial Intelligence
    • Business Intelligence vs Data Warehouse
    • Apache Kafka vs Flume
    • Data Science vs Machine Learning
    • Business Analytics Vs Predictive Analytics
    • Data mining vs Web mining
    • Data Science Vs Data Mining
    • Data Science Vs Business Analytics
    • Analyst vs Associate
    • Apache Hive vs Apache Spark SQL
    • Apache Nifi vs Apache Spark
    • Apache Spark vs Apache Flink
    • Apache Storm vs Kafka
    • Artificial Intelligence vs Business Intelligence
    • Artificial Intelligence vs Human Intelligence
    • Al vs ML vs Deep Learning
    • SQL vs SQLite
    • Assembly Language vs Machine Language
    • AWS vs AZURE
    • AWS vs Azure vs Google Cloud
    • Big Data vs Data Mining
    • Big Data vs Data Science
    • Big Data vs Data Warehouse
    • Blu-Ray vs DVD
    • Business Intelligence vs Big Data
    • Business Intelligence vs Business Analytics
    • Business Intelligence vs Data analytics
    • Business Intelligence VS Data Mining
    • Business Intelligence vs Machine Learning
    • Business Process Re-Engineering vs CI
    • Cassandra vs Elasticsearch
    • Cassandra vs Redis
    • Cloud Computing Public vs Private
    • Cloud Computing vs Fog Computing
    • Cloud Computing vs Grid Computing
    • Cloud Computing vs Hadoop
    • Computer Network vs Data Communication
    • Computer Science vs Data Science
    • Computer Scientist vs Data Scientist
    • Customer Analytics vs Web Analytics
    • Data Analyst vs Data Scientist
    • Data Analytics vs Business Analytics
    • Data Analytics vs Data Analysis
    • Data Analytics Vs Predictive Analytics
    • Data Lake vs Data Warehouse
    • Data Mining Vs Data Visualization
    • Data mining vs Machine learning
    • Data Mining Vs Statistics
    • Data Mining vs Text Mining
    • Data Science vs Artificial Intelligence
    • Data science vs Business intelligence
    • Data Science Vs Data Engineering
    • Data Science vs Data Visualization
    • Data Science vs Software Engineering
    • Data Scientist vs Big Data
    • Data Scientist vs Business Analyst
    • Data Scientist vs Data Engineer
    • Data Scientist vs Data Mining
    • Data Scientist vs Machine Learning
    • Data Scientist vs Software Engineer
    • Data visualisation vs Data analytics
    • Data vs Information
    • Data Warehouse vs Data Mart
    • Data Warehouse vs Database
    • Data Warehouse vs Hadoop
    • Data Warehousing VS Data Mining
    • DBMS vs RDBMS
    • Deep Learning vs Machine learning
    • Digital Analytics vs Digital Marketing
    • Digital Ocean vs AWS
    • DOS vs Windows
    • ETL vs ELT
    • Small Data Vs Big Data
    • Apache Hadoop vs Apache Storm
    • Hadoop vs HBase
    • Between Data Science vs Web Development
    • Hadoop vs MapReduce
    • Hadoop Vs SQL
    • Google Analytics vs Mixpanel
    • Google Analytics Vs Piwik
    • Google Cloud vs AWS
    • Hadoop vs Apache Spark
    • Hadoop vs Cassandra
    • Hadoop vs Elasticsearch
    • Hadoop vs Hive
    • Hadoop vs MongoDB
    • HADOOP vs RDBMS
    • Hadoop vs Spark
    • Hadoop vs Splunk
    • Hadoop vs SQL Performance
    • Hadoop vs Teradata
    • HBase vs HDFS
    • Hive VS HUE
    • Hive vs Impala
    • JDBC vs ODBC
    • Kafka vs Kinesis
    • Kafka vs Spark
    • Cloud Computing vs Data Analytics
    • Data Mining Vs Data Analysis
    • Data Science vs Statistics
    • Big Data Vs Predictive Analytics
    • MapReduce vs Yarn
    • Hadoop vs Redshift
    • Looker vs Tableau
    • Machine Learning vs Artificial Intelligence
    • Machine Learning vs Neural Network
    • Machine Learning vs Predictive Analytics
    • Machine Learning vs Predictive Modelling
    • Machine Learning vs Statistics
    • MariaDB vs MySQL
    • Mathematica vs Matlab
    • Matlab vs Octave
    • MATLAB vs R
    • MongoDB vs Cassandra
    • MongoDB vs DynamoDB
    • MongoDB vs HBase
    • MongoDB vs Oracle
    • MongoDB vs Postgres
    • MongoDB vs PostgreSQL
    • MongoDB vs SQL
    • MongoDB vs SQL server
    • MS SQL vs MYSQL
    • MySQL vs MongoDB
    • MySQL vs MySQLi
    • MySQL vs NoSQL
    • MySQL vs SQL Server
    • MySQL vs SQLite
    • Neural Networks vs Deep Learning
    • PIG vs MapReduce
    • Pig vs Spark
    • PL SQL vs SQL
    • Power BI Dashboard vs Report
    • Power BI vs Excel
    • Power BI vs QlikView
    • Power BI vs SSRS
    • Power BI vs Tableau
    • Power BI vs Tableau vs Qlik
    • PowerShell vs Bash
    • PowerShell vs CMD
    • PowerShell vs Command Prompt
    • PowerShell vs Python
    • Predictive Analysis vs Forecasting
    • Predictive Analytics vs Data Mining
    • Predictive Analytics vs Data Science
    • Predictive Analytics vs Descriptive Analytics
    • Predictive Analytics vs Statistics
    • Predictive Modeling vs Predictive Analytics
    • Private Cloud vs Public Cloud
    • Regression vs ANOVA
    • Regression vs Classification
    • ROLAP vs MOLAP
    • ROLAP vs MOLAP vs HOLAP
    • Spark SQL vs Presto
    • Splunk vs Elastic Search
    • Splunk vs Nagios
    • Splunk vs Spark
    • Splunk vs Tableau
    • Spring Cloud vs Spring Boot
    • Spring vs Hibernate
    • Spring vs Spring Boot
    • Spring vs Struts
    • SQL Server vs PostgreSQL
    • Sqoop vs Flume
    • Statistics vs Machine learning
    • Supervised Learning vs Deep Learning
    • Supervised Learning vs Reinforcement Learning
    • Supervised Learning vs Unsupervised Learning
    • Tableau vs Domo
    • Tableau vs Microstrategy
    • Tableau vs Power BI vs QlikView
    • Tableau vs QlikView
    • Tableau vs Spotfire
    • Talend Vs Informatica PowerCenter
    • Talend vs Mulesoft
    • Talend vs Pentaho
    • Talend vs SSIS
    • TensorFlow vs Caffe
    • Tensorflow vs Pytorch
    • TensorFlow vs Spark
    • TeraData vs Oracle
    • Text Mining vs Natural Language Processing
    • Text Mining vs Text Analytics
    • Cloud Computing vs Virtualization
    • Unit Test vs Integration Test?
    • Universal analytics vs Google Analytics
    • Visual Analytics vs Tableau
    • R vs Python
    • R vs SPSS
    • Star Schema vs Snowflake Schema
    • DDL vs DML
    • R vs R Squared
    • ActiveMQ vs Kafka
    • TDM vs FDM
    • Linear Regression vs Logistic Regression
    • Slf4j vs Log4j
    • Redis vs Kafka
    • Travis vs Jenkins
    • Fact Table vs Dimension Table
    • OLTP vs OLAP
    • Openstack vs Virtualization
    • Cluster v/s Factor analysis
    • Informatica vs Datastage
    • CCBA vs CBAP
    • SPSS vs EXCEL
    • Excel vs Tableau
    • Cassandra vs MySQL
    • RabbitMQ vs Kafka
    • SAAS vs Cloud
    • RabbitMQ vs Redis
    • AMQP vs MQTT
    • Forward Chaining vs Backward Chaining
    • Google Data Studio vs Tableau
    • ActiveMQ vs RabbitMQ
    • Cloud vs Data Center
    • Cores vs Threads
    • Inner Join vs Outer Join
    • ZeroMQ vs Kafka
    • Mxnet vs TensorFlow
    • Redis vs Memcached
    • RDBMS vs NoSQL
    • AWS Direct Connect vs VPN
    • Cassandra vs Couchbase
    • Elegoo vs Arduino
    • Redis vs MongoDB
    • Chef vs Puppet
    • GSM vs GPRS
    • Keras vs TensorFlow vs PyTorch
    • Cloudflare vs CloudFront
    • Bitmap vs Vector
    • Left Join vs Right Join
    • IaaS vs PaaS
    • Blue Prism vs UiPath
    • GNSS vs GPS
    • Cloudflare vs Akamai
    • GCP vs AWS vs Azure
    • Arduino Mega vs Uno
    • Qualitative vs Quantitative Data
    • Arduino Micro vs Nano
    • PIC vs Arduino
    • PRTG vs Solarwinds
    • PostgreSQL vs SQLite
    • Metabase vs Tableau
    • Arduino Leonardo vs Uno
    • Arduino Due vs Mega
    • ETL Vs Database Testing
    • DBMS vs File System
    • CouchDB vs MongoDB
    • Arduino Nano vs Mini
    • IaaS vs PaaS vs SaaS
    • On-premise vs off-premise
    • Couchbase vs CouchDB
    • Tableau Dimension vs Measure
    • Cognos vs Tableau
    • Data vs Metadata
    • RethinkDB vs MongoDB
    • Cloudera vs Snowflake
    • HBase vs Cassandra
    • Business Analytics vs Business Intelligence
    • R Programming vs Python
    • MongoDB vs Hadoop
    • MySQL vs Oracle
    • OData vs GraphQL
    • Soft Computing vs Hard Computing
    • Binary Tree vs Binary Search Tree
    • Datadog vs CloudWatch
    • B tree vs Binary tree
    • Cloudera vs Hortonworks
    • DevSecOps vs DevOps
    • PostgreSQL Varchar vs Text
    • PostgreSQL Database vs schema
    • MapReduce vs spark
    • Hypervisor vs Docker
    • SciLab vs Octave
    • DocumentDB vs DynamoDB
    • PostgreSQL union vs union all
    • OrientDB vs Neo4j
    • Data visualization vs Business Intelligence
    • QlikView vs Qlik Sense
    • Neo4j vs MongoDB
    • Postgres Schema vs Database
    • Mxnet vs Pytorch
    • Naive Bayes vs Logistic Regression
    • Random Forest vs Decision Tree
    • Random Forest vs XGBoost
    • DynamoDB vs Cassandra
    • Looker vs Power BI
    • PostgreSQL vs RedShift
    • Presto vs Hive
    • Random forest vs Gradient boosting
    • Gradient boosting vs AdaBoost
    • Amazon rds vs Redshift
    • Bigquery vs Bigtable
    • Data Architect vs Data Engineer
    • DataSet vs DataTable
    • dataset vs dataframe
    • Dataset vs Database
    • New Relic vs Splunk
    • Data Architect and Management Designer
    • Data Engineer vs Data Analyst
    • Grafana vs Tableau
    • MySQL text vs Varchar
    • Relational Database vs Flat File
    • Datadog vs Prometheus
    • Neo4j vs Neptune
    • Data Mining vs Data warehousing
    • DocumentDB vs MongoDB
    • PostScript vs PCL
    • QRadar vs Splunk
    • Qlik Sense vs Tableau
    • DigitalOcean vs Google Cloud
    • PostgreSQL vs Elasticsearch
    • Redshift vs blueshift
    • Gitlab vs Azure DevOps

MongoDB vs Hadoop

By Priya PedamkarPriya Pedamkar

MongoDB vs Hadoop

Difference Between MongoDB vs Hadoop

The concept didn’t commence, leading 10gen to scrap the applying associated unharness MongoDB as an Open source project. MongoDB will actually be thought-about an enormous data answer, its price noting that it’s extremely a general platform. Hadoop is meant to be run on clusters of artifact hardware, with the power consumption data in any format, together with aggregative data from multiple sources. Hadoop became a platform for multiprocessing mass amounts of data across clusters of artifact hardware.

What is MongoDB?

MongoDB was originally developed by the corporate 10gen in 2007 as a cloud-based app engine that was meant to run different packages and services. They had developed 2 main elements, Babble (the app engine) and MongoDB (the database). The concept didn’t commence, leading 10gen to scrap the applying associated unharness MongoDB as an Open source project. MongoDB will actually be thought-about an enormous data answer, its price noting that it’s extremely a general platform, designed to exchange or enhance existing RDBMS systems, giving it a healthy type of use cases.

Start Your Free Data Science Course

Hadoop, Data Science, Statistics & others

How MongoDB work?

MongoDB stores data in collections, within which totally different data fields may be queried once. The database is held on as Binary JSON (BSON) and is quickly obtainable for ad-hoc queries, indexing, replication, and Map Reduced aggregation. Database Sharding may be applied to permit distribution across multiple systems for horizontal measurability PRN. MongoDB is written in C++ and may be deployed on a Windows or UNIX operating system machine, however particularly considering MongoDB for time period low-latency comes, UNIX operating system is a perfect alternative for the sake of potency. A primary distinction between MongoDB vs Hadoop is that MongoDB is truly a database, whereas Hadoop could be an assortment of various package elements that make a data process framework.

What is Hadoop?

In distinction, Hadoop was an open-source project from the start; created by Doug Cutting (known for his work on Apache Lucerne, a preferred search categorization platform), Hadoop originally stemmed from a project known as Nutch, open-source net crawler created in 2002. In 2004, Google introduced the thought of MapReduce. Hadoop isn’t meant as a replacement for transactional RDBMS systems, however rather as a supplement to them.

How Hadoop Work?

Hadoop, as previously mentioned, could be a framework comprised of a package scheme. The first elements of Hadoop are the Hadoop Distributed filing system (HDFS) and MapReduce that is written in Java. Secondary elements are a set of alternative Apache merchandise, including: Hive (for querying data), Pig (for analysing massive data-sets), HBase (column orientating database), Oozie (for programming Hadoop jobs), Sqoop (for interfacing with alternative systems like Bi, analytics, or RBDMS), and Flume (for aggregating and preprocessing data). Like MongoDB, Hadoop’s HBase database accomplishes horizontal measurability through database sharding.  Distribution of data storage is handled by the HDFS, with associate elective organization enforced with HBase that allocates data into columns (versus the two-dimensional allocation of associate RDBMS in columns and rows). data will then be indexed (through use of package like Solr), queried with Hive, or have numerous analytics or batch jobs run on that with selections obtainable from the Hadoop scheme or your alternative of business intelligence platform.

Head to Head Comparison Between MongoDB and Hadoop (Infographics)

Below is the top 5 difference between MongoDB and Hadoop:

MongoDB vs Hadoop Infographics

Key differences between MongoDB and Hadoop

Let us discuss some of the major Difference Between MongoDB and Hadoop:

  • Hadoop is versatile within the format data; it may be of any obtainable format whereas MongoDB imports solely CSV and JSON format data.
  • MongoDB has the power of geospatial categorization that is helpful in geospatial analysis. This feature isn’t available in Hadoop.
  • MongoDB belongs to the NoSQL family whereas Hadoop use of SQL for the process of data.
  • Hadoop relies on Java whereas MongoDB has been written in the C++ language.
  • Hadoop is Suite of merchandise whereas MongoDB could be a complete Product.
  • The hardware price of MongoDB is a smaller amount compared to Hadoop.
  • When compared to Hadoop, MongoDB is a lot of versatile it will replace existing RDBMS. Hadoop, on the opposite hand, may perform all the tasks, however, ought to add an alternative package.
  • Hadoop could be a Framework which will have a lot of package for process whereas MongoDB could be a database sort.
  • Hadoop is best for large-scale process applications whereas MongoDB is best for time period mining of data and process.

MongoDB and Hadoop Comparison Table

The primary Comparison between MongoDB and Hadoop are discussed below:

S.No.

MongoDB

Hadoop

1

It provides a lot of sturdy answers, a lot of versatile then Hadoop. It Will replace existing RDBMS. The most important strength of Hadoop is that it’s engineered to handle massive data. It’s wonderful for handling batch processes and long-running ETL jobs.

2

Stores data in collections, every data fields may be queried promptly. Data is held on as Binary JSON or BSON and is accessible for querying, aggregation, indexing, and replication. Consists of different software, the important components are the Hadoop Distributed File System (HDFS) and MapReduce.

3

It is truly a database and is written in C++ Collection of various package that makes processing framework. Its Java primarily based application.

4

Designed to the method and analyze the immense volume of data. It’s a database, Primarily designed for data storage and retrieval.

5

Major grievance relating to MongoDB is fault tolerance issue, which may result in data loss. It depends in the main on ‘Name Node’, that is that the sole purpose of failure

Conclusion

Through the various topics mentioned above during this comparison of Hadoop and MongoDB as a Big Data solution, it’s apparent that an excellent deal of analysis and concerns ought to surface before preferring which is the best choice for your organization. If you’ve got needs for process low-latency time period data or trying to find a lot of encompassing answer (such as commutation your RDBMS or beginning a completely new transactional system), MongoDB could also be a decent alternative. If you’re trying to find an answer for batch, long-running analytics whereas still having the ability to question data then Hadoop could be a definite choice.

Recommended Articles

This has been a guide to the top differences between MongoDB vs Hadoop. Here we also discuss the MongoDB vs Hadoop head to head comparison, key differences along with infographics and comparison table. You may also have a look at the following articles to learn more –

  1. MongoDB vs PostgreSQL
  2. Hadoop vs Cassandra – Amazing Differences
  3. MongoDB vs Postgres
  4. MongoDB vs Oracle: Differences
  5. MongoDB vs Cassandra: What are the Differences
  6. MongoDB vs DynamoDB: What are the Benefits
  7. MongoDB vs SQL: Features
Popular Course in this category
MongoDB Training Program (4 Courses, 2 Projects)
  4 Online Courses |  2 Hands-on Projects |  22+ Hours |  Verifiable Certificate of Completion
4.5
Price

View Course

Related Courses

Data Scientist Training (85 Courses, 67+ Projects)4.9
Tableau Training (8 Courses, 8+ Projects)4.8
Azure Training (6 Courses, 5 Projects, 4 Quizzes)4.7
Hadoop Training Program (20 Courses, 14+ Projects, 4 Quizzes)4.7
Data Visualization Training (15 Courses, 5+ Projects)4.7
All in One Data Science Bundle (360+ Courses, 50+ projects)4.7
Primary Sidebar
Footer
About Us
  • Blog
  • Who is EDUCBA?
  • Sign Up
  • Live Classes
  • Corporate Training
  • Certificate from Top Institutions
  • Contact Us
  • Verifiable Certificate
  • Reviews
  • Terms and Conditions
  • Privacy Policy
  •  
Apps
  • iPhone & iPad
  • Android
Resources
  • Free Courses
  • Database Management
  • Machine Learning
  • All Tutorials
Certification Courses
  • All Courses
  • Data Science Course - All in One Bundle
  • Machine Learning Course
  • Hadoop Certification Training
  • Cloud Computing Training Course
  • R Programming Course
  • AWS Training Course
  • SAS Training Course

ISO 10004:2018 & ISO 9001:2015 Certified

© 2023 - EDUCBA. ALL RIGHTS RESERVED. THE CERTIFICATION NAMES ARE THE TRADEMARKS OF THEIR RESPECTIVE OWNERS.

EDUCBA

*Please provide your correct email id. Login details for this Free course will be emailed to you

Let’s Get Started

By signing up, you agree to our Terms of Use and Privacy Policy.

EDUCBA

*Please provide your correct email id. Login details for this Free course will be emailed to you
EDUCBA

*Please provide your correct email id. Login details for this Free course will be emailed to you
EDUCBA Login

Forgot Password?

By signing up, you agree to our Terms of Use and Privacy Policy.

This website or its third-party tools use cookies, which are necessary to its functioning and required to achieve the purposes illustrated in the cookie policy. By closing this banner, scrolling this page, clicking a link or continuing to browse otherwise, you agree to our Privacy Policy

Loading . . .
Quiz
Question:

Answer:

Quiz Result
Total QuestionsCorrect AnswersWrong AnswersPercentage

Explore 1000+ varieties of Mock tests View more