EDUCBA

EDUCBA

MENUMENU
  • Free Tutorials
  • Free Courses
  • Certification Courses
  • 360+ Courses All in One Bundle
  • Login

Hadoop vs SQL

By Priya PedamkarPriya Pedamkar

Secondary Sidebar
Head to Head Differences Tutorial
  • Differences Tutorial
    • Scikit Learn vs TensorFlow
    • Azure Functions vs Logic Apps
    • Azure Data Factory vs Databricks
    • SHA1 vs MD5
    • Azure SQL Database vs Managed Instance
    • Azure SQL Database vs SQL Server
    • PostgreSQL vs MySQL
    • PostgreSQL vs MySQL Benchmark
    • ArangoDB vs MongoDB
    • Cloud Computing vs Big Data Analytics
    • T-SQL vs SQL
    • PostgreSQL vs MariaDB
    • Spark vs Impala
    • Datadog vs Splunk
    • Domo vs Tableau
    • Data Scientist vs Data Engineer vs Statistician
    • Big Data Vs Machine Learning
    • Predictive Analytics vs Business Intelligence
    • AI vs Machine Learning vs Deep Learning
    • Business Intelligence vs Data Warehouse
    • Apache Kafka vs Flume
    • Data Science vs Machine Learning
    • Business Analytics Vs Predictive Analytics
    • Data mining vs Web mining
    • Data Science Vs Data Mining
    • Data Science Vs Business Analytics
    • Analyst vs Associate
    • Apache Hive vs Apache Spark SQL
    • Apache Nifi vs Apache Spark
    • Apache Spark vs Apache Flink
    • Apache Storm vs Kafka
    • Artificial Intelligence vs Business Intelligence
    • Artificial Intelligence vs Human Intelligence
    • Al vs ML vs Deep Learning
    • SQL vs SQLite
    • Assembly Language vs Machine Language
    • AWS vs AZURE
    • AWS vs Azure vs Google Cloud
    • Big Data vs Data Mining
    • Big Data vs Data Science
    • Big Data vs Data Warehouse
    • Blu-Ray vs DVD
    • Business Intelligence vs Big Data
    • Business Intelligence vs Business Analytics
    • Business Intelligence vs Data analytics
    • Business Intelligence VS Data Mining
    • Business Intelligence vs Machine Learning
    • Business Process Re-Engineering vs CI
    • Cassandra vs Elasticsearch
    • Cassandra vs Redis
    • Cloud Computing Public vs Private
    • Cloud Computing vs Fog Computing
    • Cloud Computing vs Grid Computing
    • Cloud Computing vs Hadoop
    • Computer Network vs Data Communication
    • Computer Science vs Data Science
    • Computer Scientist vs Data Scientist
    • Customer Analytics vs Web Analytics
    • Data Analyst vs Data Scientist
    • Data Analytics vs Business Analytics
    • Data Analytics vs Data Analysis
    • Data Analytics Vs Predictive Analytics
    • Data Lake vs Data Warehouse
    • Data Mining Vs Data Visualization
    • Data mining vs Machine learning
    • Data Mining Vs Statistics
    • Data Mining vs Text Mining
    • Data Science vs Artificial Intelligence
    • Data science vs Business intelligence
    • Data Science Vs Data Engineering
    • Data Science vs Data Visualization
    • Data Science vs Software Engineering
    • Data Scientist vs Big Data
    • Data Scientist vs Business Analyst
    • Data Scientist vs Data Engineer
    • Data Scientist vs Data Mining
    • Data Scientist vs Machine Learning
    • Data Scientist vs Software Engineer
    • Data visualisation vs Data analytics
    • Data vs Information
    • Data Warehouse vs Data Mart
    • Data Warehouse vs Database
    • Data Warehouse vs Hadoop
    • Data Warehousing VS Data Mining
    • DBMS vs RDBMS
    • Deep Learning vs Machine learning
    • Digital Analytics vs Digital Marketing
    • Digital Ocean vs AWS
    • DOS vs Windows
    • ETL vs ELT
    • Small Data Vs Big Data
    • Apache Hadoop vs Apache Storm
    • Hadoop vs HBase
    • Between Data Science vs Web Development
    • Hadoop vs MapReduce
    • Hadoop Vs SQL
    • Google Analytics vs Mixpanel
    • Google Analytics Vs Piwik
    • Google Cloud vs AWS
    • Hadoop vs Apache Spark
    • Hadoop vs Cassandra
    • Hadoop vs Elasticsearch
    • Hadoop vs Hive
    • Hadoop vs MongoDB
    • HADOOP vs RDBMS
    • Hadoop vs Spark
    • Hadoop vs Splunk
    • Hadoop vs SQL Performance
    • Hadoop vs Teradata
    • HBase vs HDFS
    • Hive VS HUE
    • Hive vs Impala
    • JDBC vs ODBC
    • Kafka vs Kinesis
    • Kafka vs Spark
    • Cloud Computing vs Data Analytics
    • Data Mining Vs Data Analysis
    • Data Science vs Statistics
    • Big Data Vs Predictive Analytics
    • MapReduce vs Yarn
    • Hadoop vs Redshift
    • Looker vs Tableau
    • Machine Learning vs Artificial Intelligence
    • Machine Learning vs Neural Network
    • Machine Learning vs Predictive Analytics
    • Machine Learning vs Predictive Modelling
    • Machine Learning vs Statistics
    • MariaDB vs MySQL
    • Mathematica vs Matlab
    • Matlab vs Octave
    • MATLAB vs R
    • MongoDB vs Cassandra
    • MongoDB vs DynamoDB
    • MongoDB vs HBase
    • MongoDB vs Oracle
    • MongoDB vs Postgres
    • MongoDB vs PostgreSQL
    • MongoDB vs SQL
    • MongoDB vs SQL server
    • MS SQL vs MYSQL
    • MySQL vs MongoDB
    • MySQL vs MySQLi
    • MySQL vs NoSQL
    • MySQL vs SQL Server
    • MySQL vs SQLite
    • Neural Networks vs Deep Learning
    • PIG vs MapReduce
    • Pig vs Spark
    • PL SQL vs SQL
    • Power BI Dashboard vs Report
    • Power BI vs Excel
    • Power BI vs QlikView
    • Power BI vs SSRS
    • Power BI vs Tableau
    • Power BI vs Tableau vs Qlik
    • PowerShell vs Bash
    • PowerShell vs CMD
    • PowerShell vs Command Prompt
    • PowerShell vs Python
    • Predictive Analysis vs Forecasting
    • Predictive Analytics vs Data Mining
    • Predictive Analytics vs Data Science
    • Predictive Analytics vs Descriptive Analytics
    • Predictive Analytics vs Statistics
    • Predictive Modeling vs Predictive Analytics
    • Private Cloud vs Public Cloud
    • Regression vs ANOVA
    • Regression vs Classification
    • ROLAP vs MOLAP
    • ROLAP vs MOLAP vs HOLAP
    • Spark SQL vs Presto
    • Splunk vs Elastic Search
    • Splunk vs Nagios
    • Splunk vs Spark
    • Splunk vs Tableau
    • Spring Cloud vs Spring Boot
    • Spring vs Hibernate
    • Spring vs Spring Boot
    • Spring vs Struts
    • SQL Server vs PostgreSQL
    • Sqoop vs Flume
    • Statistics vs Machine learning
    • Supervised Learning vs Deep Learning
    • Supervised Learning vs Reinforcement Learning
    • Supervised Learning vs Unsupervised Learning
    • Tableau vs Domo
    • Tableau vs Microstrategy
    • Tableau vs Power BI vs QlikView
    • Tableau vs QlikView
    • Tableau vs Spotfire
    • Talend Vs Informatica PowerCenter
    • Talend vs Mulesoft
    • Talend vs Pentaho
    • Talend vs SSIS
    • TensorFlow vs Caffe
    • Tensorflow vs Pytorch
    • TensorFlow vs Spark
    • TeraData vs Oracle
    • Text Mining vs Natural Language Processing
    • Text Mining vs Text Analytics
    • Cloud Computing vs Virtualization
    • Unit Test vs Integration Test?
    • Universal analytics vs Google Analytics
    • Visual Analytics vs Tableau
    • R vs Python
    • R vs SPSS
    • Star Schema vs Snowflake Schema
    • DDL vs DML
    • R vs R Squared
    • ActiveMQ vs Kafka
    • TDM vs FDM
    • Linear Regression vs Logistic Regression
    • Slf4j vs Log4j
    • Redis vs Kafka
    • Travis vs Jenkins
    • Fact Table vs Dimension Table
    • OLTP vs OLAP
    • Openstack vs Virtualization
    • Cluster v/s Factor analysis
    • Informatica vs Datastage
    • CCBA vs CBAP
    • SPSS vs EXCEL
    • Excel vs Tableau
    • Cassandra vs MySQL
    • RabbitMQ vs Kafka
    • SAAS vs Cloud
    • RabbitMQ vs Redis
    • AMQP vs MQTT
    • Forward Chaining vs Backward Chaining
    • Google Data Studio vs Tableau
    • ActiveMQ vs RabbitMQ
    • Cloud vs Data Center
    • Cores vs Threads
    • Inner Join vs Outer Join
    • ZeroMQ vs Kafka
    • Mxnet vs TensorFlow
    • Redis vs Memcached
    • RDBMS vs NoSQL
    • AWS Direct Connect vs VPN
    • Cassandra vs Couchbase
    • Elegoo vs Arduino
    • Redis vs MongoDB
    • Chef vs Puppet
    • GSM vs GPRS
    • Keras vs TensorFlow vs PyTorch
    • Cloudflare vs CloudFront
    • Bitmap vs Vector
    • Left Join vs Right Join
    • IaaS vs PaaS
    • Blue Prism vs UiPath
    • GNSS vs GPS
    • Cloudflare vs Akamai
    • GCP vs AWS vs Azure
    • Arduino Mega vs Uno
    • Qualitative vs Quantitative Data
    • Arduino Micro vs Nano
    • PIC vs Arduino
    • PRTG vs Solarwinds
    • PostgreSQL vs SQLite
    • Metabase vs Tableau
    • Arduino Leonardo vs Uno
    • Arduino Due vs Mega
    • ETL Vs Database Testing
    • DBMS vs File System
    • CouchDB vs MongoDB
    • Arduino Nano vs Mini
    • IaaS vs PaaS vs SaaS
    • On-premise vs off-premise
    • Couchbase vs CouchDB
    • Tableau Dimension vs Measure
    • Cognos vs Tableau
    • Data vs Metadata
    • RethinkDB vs MongoDB
    • Cloudera vs Snowflake
    • HBase vs Cassandra
    • Business Analytics vs Business Intelligence
    • R Programming vs Python
    • MongoDB vs Hadoop
    • MySQL vs Oracle
    • OData vs GraphQL
    • Soft Computing vs Hard Computing
    • Binary Tree vs Binary Search Tree
    • Datadog vs CloudWatch
    • B tree vs Binary tree
    • Cloudera vs Hortonworks
    • DevSecOps vs DevOps
    • PostgreSQL Varchar vs Text
    • PostgreSQL Database vs schema
    • MapReduce vs spark
    • Hypervisor vs Docker
    • SciLab vs Octave
    • DocumentDB vs DynamoDB
    • PostgreSQL union vs union all
    • OrientDB vs Neo4j
    • Data visualization vs Business Intelligence
    • QlikView vs Qlik Sense
    • Neo4j vs MongoDB
    • Postgres Schema vs Database
    • Mxnet vs Pytorch
    • Naive Bayes vs Logistic Regression
    • Random Forest vs Decision Tree
    • Random Forest vs XGBoost
    • DynamoDB vs Cassandra
    • Looker vs Power BI
    • PostgreSQL vs RedShift
    • Presto vs Hive
    • Random forest vs Gradient boosting
    • Gradient boosting vs AdaBoost
    • Amazon rds vs Redshift
    • Bigquery vs Bigtable
    • Data Architect vs Data Engineer
    • DataSet vs DataTable
    • dataset vs dataframe
    • Dataset vs Database
    • New Relic vs Splunk
    • Data Architect and Management Designer
    • Data Engineer vs Data Analyst
    • Grafana vs Tableau
    • MySQL text vs Varchar
    • Relational Database vs Flat File
    • Datadog vs Prometheus
    • Neo4j vs Neptune
    • Data Mining vs Data warehousing
    • DocumentDB vs MongoDB
    • PostScript vs PCL
    • QRadar vs Splunk
    • Qlik Sense vs Tableau
    • DigitalOcean vs Google Cloud
    • PostgreSQL vs Elasticsearch
    • Redshift vs blueshift
    • Gitlab vs Azure DevOps

Related Courses

Online Data Science Course

Online Tableau Training

Azure Training Course

Hadoop Certification Course

Data Visualization Courses

All in One Data Science Course

Home Data Science Data Science Tutorials Head to Head Differences Tutorial Hadoop vs SQL

Hadoop vs SQL

Difference between Hadoop vs SQL

The enormous data generated every second via Social Media like Facebook, Twitter, and Instagram has paved the way for the development of Hadoop/ Big Data Ecosystem. The term “3V” referring to Volume, Velocity, and Veracity defines the importance of Hadoop to handle the streaming Data.  Today, data are generated from multiple sources which are needed to be integrated for various purposes like Reporting, Data Analysis, and Research and for centralized storage of data. When we are doing so, there arise numerous issues with Traditional approaches like space, access, integrity, structure, and bandwidth. To handle all these issues, Hadoop provides a framework that enables to process the data with a huge size, provides easy access, high availability, and loads data dynamically. It has a Distributed File System framework (HDFS) for the storage of Data and an In-Built query processor called “Map Reduce” for the analysis and processing of data stored in HDFS.

Head to Head Comparison Between Hadoop and SQL (Infographics)

Below is the top 6 difference between Hadoop and SQL:

Start Your Free Data Science Course

Hadoop, Data Science, Statistics & others

All in One Data Science Bundle(360+ Courses, 50+ projects)
Python TutorialMachine LearningAWSArtificial Intelligence
TableauR ProgrammingPowerBIDeep Learning
Price
View Courses
360+ Online Courses | 50+ projects | 1500+ Hours | Verifiable Certificates | Lifetime Access
4.7 (85,992 ratings)

hadoop vs sql Infographics

Key Differences Between Hadoop and SQL

Below is the difference between Hadoop and SQL are as follows:

  1. Schema on WRITE vs READ

Generally in a traditional database, during data load/migration from one database to another, it follows schema on Write approach. This makes the data load process to get excited/ aborted and results in rejection of records due to a difference in the structure of the source and target tables, Whereas in Hadoop system- all the data are stored in HDFS and Data are centralized.

Hadoop framework is mainly used for Data Analytics process. Thus it supports all three categories of data i.e.  Structured, semi-structured and unstructured data and it enables Schema on reading approach.

  • Structured data has a definite format. g.: XML file.
  • Semi Structures data is looser; It might/ not have a schema. g.: Spreadsheet
  • Unstructured data does not have a specific structure or a schema. E.g.: Plain Text or Image.

Hadoop works efficiently with unstructured data as it has the capability to interpret the data during the processing time.

Approach Advantage Disadvantage
Schema on Write ·         Pre-defined Structures

·         Faster Read.

E.g.: Traditional RDBMS.

Slow Data Load

High Latency

Schema on Read ·         Dynamic Structure

·         Fast write and read.

E.g.: Hadoop

Fast Data load

Low Latency

                                          Table: Schema on WRITE VS Schema on READ.

  1. Scalability & Cost

Hadoop Framework is designed to process a large volume of data. Whenever the size of data increases, a number of additional resources like data node can be added to the cluster very easily than the traditional approaching of static memory allocation. Time and Budget is relatively very less for implementing them and also Hadoop provides Data Locality where the data is made available in the node that executed the job.

  1. Fault Tolerance

In the traditional RDBMS, when data is lost due to corruption or any network issue, it takes more time, cost and resource to get back the lost data. But, Hadoop has a mechanism where the data has minimum three level of replication factor for the data that are stored in HDFS. If one of the data nodes that hold data gets failed, data can be easily pulled from other data nodes with high availability of data. Hence makes the data readily available to user irrespective of any failure.

  1. Functional Programming

Hadoop supports writing functional programming in languages like java, scala, and python. For any application that requires any additional functionality can be implemented by registering UDF –User Defined Functions in the HDFS. In RDBMS, there is no possibility of writing UDF and this increases the complexity of writing SQL. Moreover the data stored in HDFS can be accessed by all the ecosystem of Hadoop like Hive, Pig, Sqoop and HBase. So, if the UDF is written it can be used by any of the abovementioned application. It increases the performance and supportability of the system.

  1. Optimization

Hadoop stores data in HDFS and Process though Map Reduce with huge optimization techniques. The most popular techniques used for handling data are using partitioning and bucketing of the data stored. Partitioning is an approach for storing the data in HDFS by splitting the data based on the column mentioned for partitioning. When the data is injected or loaded into HDFS, it identifies the partition column and pushes the data into the concerned partition directory.  So the query fetches the result set by directly fetching the data from the partitioned directory. This reduces the whole table scan, improves the response time and avoids latency.

Another approach is called Bucketing of the data. This enables the analyst to easily distribute the data among the data nodes.  All nodes will have an equal number of data distributed. The bucketing column is selected in such a way that it has the least number of cardinality.

These approaches are not available in the Traditional method of SQL.

  1. Data Type

In a traditional approach, the datatype supported are very limited. It supports only structured data. Thus to clean and format the schema of data itself will take more time. But, Hadoop supports complex data type like Array,  Struct, and Map. This encourages using the different kinds of a dataset to be used for data load. For Ex: the XML data can be loaded by defining the data with XML elements containing complex data type.

  1. Data Compression

There are very less inbuilt compression techniques available for the traditional database system. But for the Hadoop framework, there are many compression techniques like gzib, bzip2, LZO and snappy. The default compression mode is LZ4. Even the tables can be compressed using the compression techniques like Parquet, ORC.  Compression techniques help in making the tables to occupy very less space increase the throughput and faster query execution.

Hadoop vs SQL Comparison Table

Following is the Comparison table between Linux and Solaris.

Characteristics Traditional SQL Hadoop
Data Size Gigabytes Petabytes
Access Interactive & Batch Batch
Updates Read and Write – Multiple times Write once, read Multiple times
Structure Static Schema Dynamic Schema
Integrity High Low
Scaling Non-Linear Linear

Table: Comparison between Traditional Hadoop and SQL Framework.

Conclusion

Overall, Hadoop steps ahead of the traditional SQL in terms of cost, time, performance, reliability, supportability and availability of data to the very large user group. In order to efficiently handle the tremendous amount of data generated every day, Hadoop framework helps in timely capturing, storing, processing, filtering and finally storing in it in a centralized place.

Recommended Articles

This has been a guide to Difference between Hadoop vs SQL. Here we have discussed Hadoop vs SQL head to head comparison, key difference along with infographics and comparison table. You may also look at the following articles to learn more –

  1. Hadoop vs Hive – Find Out The Best Differences
  2. Learn The 10 Useful Difference Between Hadoop vs Redshift
  3. HADOOP vs RDBMS|Know The 12 Useful Differences
  4. Hadoop vs Spark: Features
Popular Course in this category
Hadoop Training Program (20 Courses, 14+ Projects, 4 Quizzes)
  20 Online Courses |  14 Hands-on Projects |  135+ Hours |  Verifiable Certificate of Completion
4.5
Price

View Course

Related Courses

Data Scientist Training (85 Courses, 67+ Projects)4.9
Tableau Training (8 Courses, 8+ Projects)4.8
Azure Training (6 Courses, 5 Projects, 4 Quizzes)4.7
Data Visualization Training (15 Courses, 5+ Projects)4.7
All in One Data Science Bundle (360+ Courses, 50+ projects)4.7
1 Shares
Share
Tweet
Share
Primary Sidebar
Footer
About Us
  • Blog
  • Who is EDUCBA?
  • Sign Up
  • Live Classes
  • Corporate Training
  • Certificate from Top Institutions
  • Contact Us
  • Verifiable Certificate
  • Reviews
  • Terms and Conditions
  • Privacy Policy
  •  
Apps
  • iPhone & iPad
  • Android
Resources
  • Free Courses
  • Database Management
  • Machine Learning
  • All Tutorials
Certification Courses
  • All Courses
  • Data Science Course - All in One Bundle
  • Machine Learning Course
  • Hadoop Certification Training
  • Cloud Computing Training Course
  • R Programming Course
  • AWS Training Course
  • SAS Training Course

ISO 10004:2018 & ISO 9001:2015 Certified

© 2022 - EDUCBA. ALL RIGHTS RESERVED. THE CERTIFICATION NAMES ARE THE TRADEMARKS OF THEIR RESPECTIVE OWNERS.

EDUCBA
Free Data Science Course

SPSS, Data visualization with Python, Matplotlib Library, Seaborn Package

*Please provide your correct email id. Login details for this Free course will be emailed to you

By signing up, you agree to our Terms of Use and Privacy Policy.

EDUCBA Login

Forgot Password?

By signing up, you agree to our Terms of Use and Privacy Policy.

EDUCBA
Free Data Science Course

Hadoop, Data Science, Statistics & others

*Please provide your correct email id. Login details for this Free course will be emailed to you

By signing up, you agree to our Terms of Use and Privacy Policy.

EDUCBA

*Please provide your correct email id. Login details for this Free course will be emailed to you

By signing up, you agree to our Terms of Use and Privacy Policy.

Let’s Get Started

By signing up, you agree to our Terms of Use and Privacy Policy.

This website or its third-party tools use cookies, which are necessary to its functioning and required to achieve the purposes illustrated in the cookie policy. By closing this banner, scrolling this page, clicking a link or continuing to browse otherwise, you agree to our Privacy Policy

Loading . . .
Quiz
Question:

Answer:

Quiz Result
Total QuestionsCorrect AnswersWrong AnswersPercentage

Explore 1000+ varieties of Mock tests View more

Special Offer - Hadoop Training Program (20 Courses, 14+ Projects) Learn More