EDUCBA Logo

EDUCBA

MENUMENU
  • Explore
    • EDUCBA Pro
    • PRO Bundles
    • Featured Skills
    • New & Trending
    • Fresh Entries
    • Finance
    • Data Science
    • Programming and Dev
    • Excel
    • Marketing
    • HR
    • PDP
    • VFX and Design
    • Project Management
    • Exam Prep
    • All Courses
  • Blog
  • Enterprise
  • Free Courses
  • Log in
  • Sign Up
Home Finance Finance Resources Finance Formula Macaulay Duration Formula
 

Macaulay Duration Formula

Madhuri Thakur
Article byMadhuri Thakur

Updated July 24, 2023

Macaulay Duration Formula

 

 

Macaulay Duration Formula (Table of Contents)
  • Formula
  • Examples

What is the Macaulay Duration Formula?

Named after Frederick Macaulay, Macaulay’s Duration is the measure of the bond’s sensitivity to changes in interest rates. It is the weighted average number of days for which the investor has to hold the bond to make the present value of all the cash flows equal to the amount paid for the bond.

Watch our Demo Courses and Videos

Valuation, Hadoop, Excel, Mobile Apps, Web Development & many more.

Macaulay duration is an important factor that investors consider before investing in any kind of debt instrument. Using the duration of the coupon payments and the inverse relationship between the interest rate and price of the bonds, investors get a sense of which bond to buy.

Mathematically, it is represented as,

Formula,

Macaulay Duration = [T * C / (1 + Y) ^ T + N * M / (1+Y) ^ N] /  Price

And

Macaulay Duration = Modified Duration * [1 + (Yield/ Frequency)]

Where –

  • T: Total Time Period
  • C: Coupon Payment
  • Y: Yield
  • N: Total Number of Periods
  • M: Maturity
  • Price: Present Value of All the Cash Flows

Example of Macaulay Duration Formula (With Excel Template)

Let’s take an example to understand the calculation of the Macaulay Duration Formula in a better manner.

You can download this Macaulay Duration Formula Excel Template here – Macaulay Duration Formula Excel Template

Macaulay Duration Formula – Example #1

Let us take the example of two bonds, A and B, with a similar face value of $100 and a frequency of 2. Bond A has a Coupon of 7%, and a Yield of 6%; on the other hand, Bond B has a Coupon of 9% and a Yield similar to the coupon at 9%. The maturity of Bond A is in 4 years, while Bond B is in 5 years. When Yield is equal to the coupon rate, face value is equal to price, like in the case of bond B, and when the coupon is greater than Yield, the price of the bond is higher than face value. In this example, we will calculate Macaulay duration using Modified Duration; this is the simplest way to calculate Macaulay duration.

Macaulay Duration Formula-1.1

Solution:

Price is calculated as

Macaulay Duration Formula-1.2

Modified Duration is calculated as

Macaulay Duration Formula-1.3

Macaulay Duration is calculated using the formula given below

Macaulay Duration = Modified Duration * (1 + (Yield/ Frequency))

Macaulay Duration Formula-1.4

Using the above formula, Macaulay Duration of Bond A is at 3.57 while Macaulay Duration of  Bond B is at 4.13.

Macaulay Duration Formula – Example #2

Let us take another example and calculate Macaulay Duration using the longer method. Let us take a Bond A $100 value bond that pays a 6% coupon rate and matures in four years. The coupon rate is 8% p.a with semi-annual payment. We can expect the following cash flows to occur: 6 months: $3, 1 year: $3, 5 years: $3, 2 years: $3, 5 years: $3, 3 years: $3, 5 years: $3, 4 years: $103. Let us now calculate Macaulay Duration using these cash flows.

Macaulay Duration Formula-2.1

Solution:

We will first calculate the discount factors for all the periods using the formula 1 / (1+ r) n, where r is the coupon rate and n is the total number of periods for which it has to be compounded. After calculating the discount factor, we will multiply it with the cash flows to get the present value.

After calculating the discount factor, we will multiply it with the respective cash flow to get the present value and sum all the cash flows to get the bond’s Macaulay Duration.

Discount Factor is calculated as

Discount Factor for 6 months = 1 / (1 + 6%/2)

Discount Factor

Discount factor = 0.97

The Present Value of Cash flow is calculated as

Present Value of Cash flow

The sum is calculated as

Macaulay Duration Formula-2.4

Weighted Cashflow is calculated as

Macaulay Duration Formula-2.5

Present Value of Weighted Cashflow is calculated as

Present Value of Weighted Cashflow

The Sum of Weighted Cashflow is calculated as

Sum of Weighted Cashflow

Semiannual Duration is calculated as

Semiannual Duration

Macaulay Duration is calculated as

Macaulay Duration Formula-2.9

  • Macaulay Duration Formula – Example #3Current Bond Price = PV of all the cash flows 382.861
  • Semiannual Macaulay Duration = $ 382.861/ $100 = 3.82
  • To get an annual duration simply divide the duration with two = 1.914

Macaulay Duration Formula – Example #3

One more way of calculating duration is by using an excel spreadsheet by using an inbuilt formula. The excel DURATION function calculates Macaulay Duration for a par value of $100.

Syntax: DURATION (settlement, maturity, coupon, yield, frequency, [basis] )

Where

  • Settlement = Date of the Settlement of The Security
  • Maturity = Maturity Date
  • Coupon = Coupon Rate
  • Yld = Annual Yield
  • Basis = Financial Day Count Basis
  • Frequency = Number of Coupon Payments Paid in A Year:
  1. 1: Annually
  2. 2: Semi-Annually
  3. 4: Quarterly

calculating duration

Solution:

Let us consider a $100 par bond with a Settlement date as 1st April 2015, a Maturity date as 31st March 2025, coupon rate of 6% paid quarterly with a yield of 8%

Macaulay Duration is calculated as

excel Formula-3.2
In the above calculation basis argument has been omitted in this case; the default value of 30/360-day count basis is used.

Possible Errors and their meanings in excel:

#NUM:

  • It occurs if the settlement date is greater than or equal to the maturity date
  • If the numbers are invalid for either Coupon, yield, and frequency

#VALUE:L

  • Any values are not numeric.
  • Or any one of the dates or both are not excel valid dates

Explanation

The Macaulay Duration Formula can be calculated by using the below explanation:

Macaulay Duration considers the time, coupon payment, the current yield, par value of the bond and the price to arrive at a number. All this information can be accessed easily, and using the above formula; Duration can be calculated.

Relevance and Use of Macaulay Duration Formula

Understanding duration helps an investor in determining the correct pick of fixed income security. Just as mean, standard deviation, beta act as a measure for equities, Macaulay Duration is for fixed income securities. One important point to consider is that Duration is a good approximation for an option free bond with small changes in interest rates. When rates increase and become larger, it becomes increasingly important to understand the bond yield relationship; however, using a linear approximation like duration will contain a lot of errors.

Recommended Articles

This is a guide to the Macaulay Duration Formula. Here we discuss how to calculate the Macaulay Duration Formula along with practical examples. We also provide a downloadable excel template. You may also look at the following articles to learn more –

  1. Calculation of Percentage Change Formula
  2. Example of Marginal Product Formula
  3. What is Return on Sales?
  4. How to Calculate Gross Income Formula?
  5. Modified Duration Formula | Examples
  6. Modified Duration | Example with Excel Template

Primary Sidebar

Footer

Follow us!
  • EDUCBA FacebookEDUCBA TwitterEDUCBA LinkedINEDUCBA Instagram
  • EDUCBA YoutubeEDUCBA CourseraEDUCBA Udemy
APPS
EDUCBA Android AppEDUCBA iOS App
Blog
  • Blog
  • Free Tutorials
  • About us
  • Contact us
  • Log in
Courses
  • Enterprise Solutions
  • Free Courses
  • Explore Programs
  • All Courses
  • All in One Bundles
  • Sign up
Email
  • [email protected]

ISO 10004:2018 & ISO 9001:2015 Certified

© 2025 - EDUCBA. ALL RIGHTS RESERVED. THE CERTIFICATION NAMES ARE THE TRADEMARKS OF THEIR RESPECTIVE OWNERS.

EDUCBA

*Please provide your correct email id. Login details for this Free course will be emailed to you
Loading . . .
Quiz
Question:

Answer:

Quiz Result
Total QuestionsCorrect AnswersWrong AnswersPercentage

Explore 1000+ varieties of Mock tests View more

EDUCBA

*Please provide your correct email id. Login details for this Free course will be emailed to you
EDUCBA
Free Investment Banking Course

Corporate Valuation, Investment Banking, Accounting, CFA Calculator & others

By continuing above step, you agree to our Terms of Use and Privacy Policy.
*Please provide your correct email id. Login details for this Free course will be emailed to you
EDUCBA

*Please provide your correct email id. Login details for this Free course will be emailed to you

EDUCBA

Download Macaulay Duration Formula Excel Template

EDUCBA Login

Forgot Password?

EDUCBA

डाउनलोड Macaulay Duration Formula Excel Template

🚀 Limited Time Offer! - 🎁 ENROLL NOW