EDUCBA

EDUCBA

MENUMENU
  • Free Tutorials
  • Free Courses
  • Certification Courses
  • 360+ Courses All in One Bundle
  • Login
Home Data Science Data Science Tutorials Head to Head Differences Tutorial Data Analytics vs Predictive Analytics
Secondary Sidebar
Head to Head Differences Tutorial
  • Differences Tutorial
    • Scikit Learn vs TensorFlow
    • Azure Functions vs Logic Apps
    • Azure Data Factory vs Databricks
    • SHA1 vs MD5
    • Azure SQL Database vs Managed Instance
    • Azure SQL Database vs SQL Server
    • PostgreSQL vs MySQL
    • PostgreSQL vs MySQL Benchmark
    • ArangoDB vs MongoDB
    • Cloud Computing vs Big Data Analytics
    • T-SQL vs SQL
    • PostgreSQL vs MariaDB
    • Spark vs Impala
    • Datadog vs Splunk
    • Domo vs Tableau
    • Data Scientist vs Data Engineer vs Statistician
    • Big Data Vs Machine Learning
    • Predictive Analytics vs Business Intelligence
    • AI vs Machine Learning vs Deep Learning
    • Business Intelligence vs Data Warehouse
    • Apache Kafka vs Flume
    • Data Science vs Machine Learning
    • Business Analytics Vs Predictive Analytics
    • Data mining vs Web mining
    • Data Science Vs Data Mining
    • Data Science Vs Business Analytics
    • Analyst vs Associate
    • Apache Hive vs Apache Spark SQL
    • Apache Nifi vs Apache Spark
    • Apache Spark vs Apache Flink
    • Apache Storm vs Kafka
    • Artificial Intelligence vs Business Intelligence
    • Artificial Intelligence vs Human Intelligence
    • Al vs ML vs Deep Learning
    • SQL vs SQLite
    • Assembly Language vs Machine Language
    • AWS vs AZURE
    • AWS vs Azure vs Google Cloud
    • Big Data vs Data Mining
    • Big Data vs Data Science
    • Big Data vs Data Warehouse
    • Blu-Ray vs DVD
    • Business Intelligence vs Big Data
    • Business Intelligence vs Business Analytics
    • Business Intelligence vs Data analytics
    • Business Intelligence VS Data Mining
    • Business Intelligence vs Machine Learning
    • Business Process Re-Engineering vs CI
    • Cassandra vs Elasticsearch
    • Cassandra vs Redis
    • Cloud Computing Public vs Private
    • Cloud Computing vs Fog Computing
    • Cloud Computing vs Grid Computing
    • Cloud Computing vs Hadoop
    • Computer Network vs Data Communication
    • Computer Science vs Data Science
    • Computer Scientist vs Data Scientist
    • Customer Analytics vs Web Analytics
    • Data Analyst vs Data Scientist
    • Data Analytics vs Business Analytics
    • Data Analytics vs Data Analysis
    • Data Analytics Vs Predictive Analytics
    • Data Lake vs Data Warehouse
    • Data Mining Vs Data Visualization
    • Data mining vs Machine learning
    • Data Mining Vs Statistics
    • Data Mining vs Text Mining
    • Data Science vs Artificial Intelligence
    • Data science vs Business intelligence
    • Data Science Vs Data Engineering
    • Data Science vs Data Visualization
    • Data Science vs Software Engineering
    • Data Scientist vs Big Data
    • Data Scientist vs Business Analyst
    • Data Scientist vs Data Engineer
    • Data Scientist vs Data Mining
    • Data Scientist vs Machine Learning
    • Data Scientist vs Software Engineer
    • Data visualisation vs Data analytics
    • Data vs Information
    • Data Warehouse vs Data Mart
    • Data Warehouse vs Database
    • Data Warehouse vs Hadoop
    • Data Warehousing VS Data Mining
    • DBMS vs RDBMS
    • Deep Learning vs Machine learning
    • Digital Analytics vs Digital Marketing
    • Digital Ocean vs AWS
    • DOS vs Windows
    • ETL vs ELT
    • Small Data Vs Big Data
    • Apache Hadoop vs Apache Storm
    • Hadoop vs HBase
    • Between Data Science vs Web Development
    • Hadoop vs MapReduce
    • Hadoop Vs SQL
    • Google Analytics vs Mixpanel
    • Google Analytics Vs Piwik
    • Google Cloud vs AWS
    • Hadoop vs Apache Spark
    • Hadoop vs Cassandra
    • Hadoop vs Elasticsearch
    • Hadoop vs Hive
    • Hadoop vs MongoDB
    • HADOOP vs RDBMS
    • Hadoop vs Spark
    • Hadoop vs Splunk
    • Hadoop vs SQL Performance
    • Hadoop vs Teradata
    • HBase vs HDFS
    • Hive VS HUE
    • Hive vs Impala
    • JDBC vs ODBC
    • Kafka vs Kinesis
    • Kafka vs Spark
    • Cloud Computing vs Data Analytics
    • Data Mining Vs Data Analysis
    • Data Science vs Statistics
    • Big Data Vs Predictive Analytics
    • MapReduce vs Yarn
    • Hadoop vs Redshift
    • Looker vs Tableau
    • Machine Learning vs Artificial Intelligence
    • Machine Learning vs Neural Network
    • Machine Learning vs Predictive Analytics
    • Machine Learning vs Predictive Modelling
    • Machine Learning vs Statistics
    • MariaDB vs MySQL
    • Mathematica vs Matlab
    • Matlab vs Octave
    • MATLAB vs R
    • MongoDB vs Cassandra
    • MongoDB vs DynamoDB
    • MongoDB vs HBase
    • MongoDB vs Oracle
    • MongoDB vs Postgres
    • MongoDB vs PostgreSQL
    • MongoDB vs SQL
    • MongoDB vs SQL server
    • MS SQL vs MYSQL
    • MySQL vs MongoDB
    • MySQL vs MySQLi
    • MySQL vs NoSQL
    • MySQL vs SQL Server
    • MySQL vs SQLite
    • Neural Networks vs Deep Learning
    • PIG vs MapReduce
    • Pig vs Spark
    • PL SQL vs SQL
    • Power BI Dashboard vs Report
    • Power BI vs Excel
    • Power BI vs QlikView
    • Power BI vs SSRS
    • Power BI vs Tableau
    • Power BI vs Tableau vs Qlik
    • PowerShell vs Bash
    • PowerShell vs CMD
    • PowerShell vs Command Prompt
    • PowerShell vs Python
    • Predictive Analysis vs Forecasting
    • Predictive Analytics vs Data Mining
    • Predictive Analytics vs Data Science
    • Predictive Analytics vs Descriptive Analytics
    • Predictive Analytics vs Statistics
    • Predictive Modeling vs Predictive Analytics
    • Private Cloud vs Public Cloud
    • Regression vs ANOVA
    • Regression vs Classification
    • ROLAP vs MOLAP
    • ROLAP vs MOLAP vs HOLAP
    • Spark SQL vs Presto
    • Splunk vs Elastic Search
    • Splunk vs Nagios
    • Splunk vs Spark
    • Splunk vs Tableau
    • Spring Cloud vs Spring Boot
    • Spring vs Hibernate
    • Spring vs Spring Boot
    • Spring vs Struts
    • SQL Server vs PostgreSQL
    • Sqoop vs Flume
    • Statistics vs Machine learning
    • Supervised Learning vs Deep Learning
    • Supervised Learning vs Reinforcement Learning
    • Supervised Learning vs Unsupervised Learning
    • Tableau vs Domo
    • Tableau vs Microstrategy
    • Tableau vs Power BI vs QlikView
    • Tableau vs QlikView
    • Tableau vs Spotfire
    • Talend Vs Informatica PowerCenter
    • Talend vs Mulesoft
    • Talend vs Pentaho
    • Talend vs SSIS
    • TensorFlow vs Caffe
    • Tensorflow vs Pytorch
    • TensorFlow vs Spark
    • TeraData vs Oracle
    • Text Mining vs Natural Language Processing
    • Text Mining vs Text Analytics
    • Cloud Computing vs Virtualization
    • Unit Test vs Integration Test?
    • Universal analytics vs Google Analytics
    • Visual Analytics vs Tableau
    • R vs Python
    • R vs SPSS
    • Star Schema vs Snowflake Schema
    • DDL vs DML
    • R vs R Squared
    • ActiveMQ vs Kafka
    • TDM vs FDM
    • Linear Regression vs Logistic Regression
    • Slf4j vs Log4j
    • Redis vs Kafka
    • Travis vs Jenkins
    • Fact Table vs Dimension Table
    • OLTP vs OLAP
    • Openstack vs Virtualization
    • Cluster v/s Factor analysis
    • Informatica vs Datastage
    • CCBA vs CBAP
    • SPSS vs EXCEL
    • Excel vs Tableau
    • Cassandra vs MySQL
    • RabbitMQ vs Kafka
    • SAAS vs Cloud
    • RabbitMQ vs Redis
    • AMQP vs MQTT
    • Forward Chaining vs Backward Chaining
    • Google Data Studio vs Tableau
    • ActiveMQ vs RabbitMQ
    • Cloud vs Data Center
    • Cores vs Threads
    • Inner Join vs Outer Join
    • ZeroMQ vs Kafka
    • Mxnet vs TensorFlow
    • Redis vs Memcached
    • RDBMS vs NoSQL
    • AWS Direct Connect vs VPN
    • Cassandra vs Couchbase
    • Elegoo vs Arduino
    • Redis vs MongoDB
    • Chef vs Puppet
    • GSM vs GPRS
    • Keras vs TensorFlow vs PyTorch
    • Cloudflare vs CloudFront
    • Bitmap vs Vector
    • Left Join vs Right Join
    • IaaS vs PaaS
    • Blue Prism vs UiPath
    • GNSS vs GPS
    • Cloudflare vs Akamai
    • GCP vs AWS vs Azure
    • Arduino Mega vs Uno
    • Qualitative vs Quantitative Data
    • Arduino Micro vs Nano
    • PIC vs Arduino
    • PRTG vs Solarwinds
    • PostgreSQL vs SQLite
    • Metabase vs Tableau
    • Arduino Leonardo vs Uno
    • Arduino Due vs Mega
    • ETL Vs Database Testing
    • DBMS vs File System
    • CouchDB vs MongoDB
    • Arduino Nano vs Mini
    • IaaS vs PaaS vs SaaS
    • On-premise vs off-premise
    • Couchbase vs CouchDB
    • Tableau Dimension vs Measure
    • Cognos vs Tableau
    • Data vs Metadata
    • RethinkDB vs MongoDB
    • Cloudera vs Snowflake
    • HBase vs Cassandra
    • Business Analytics vs Business Intelligence
    • R Programming vs Python
    • MongoDB vs Hadoop
    • MySQL vs Oracle
    • OData vs GraphQL
    • Soft Computing vs Hard Computing
    • Binary Tree vs Binary Search Tree
    • Datadog vs CloudWatch
    • B tree vs Binary tree
    • Cloudera vs Hortonworks
    • DevSecOps vs DevOps
    • PostgreSQL Varchar vs Text
    • PostgreSQL Database vs schema
    • MapReduce vs spark
    • Hypervisor vs Docker
    • SciLab vs Octave
    • DocumentDB vs DynamoDB
    • PostgreSQL union vs union all
    • OrientDB vs Neo4j
    • Data visualization vs Business Intelligence
    • QlikView vs Qlik Sense
    • Neo4j vs MongoDB
    • Postgres Schema vs Database
    • Mxnet vs Pytorch
    • Naive Bayes vs Logistic Regression
    • Random Forest vs Decision Tree
    • Random Forest vs XGBoost
    • DynamoDB vs Cassandra
    • Looker vs Power BI
    • PostgreSQL vs RedShift
    • Presto vs Hive
    • Random forest vs Gradient boosting
    • Gradient boosting vs AdaBoost
    • Amazon rds vs Redshift
    • Bigquery vs Bigtable
    • Data Architect vs Data Engineer
    • DataSet vs DataTable
    • dataset vs dataframe
    • Dataset vs Database
    • New Relic vs Splunk
    • Data Architect and Management Designer
    • Data Engineer vs Data Analyst
    • Grafana vs Tableau
    • MySQL text vs Varchar
    • Relational Database vs Flat File
    • Datadog vs Prometheus
    • Neo4j vs Neptune
    • Data Mining vs Data warehousing
    • DocumentDB vs MongoDB
    • PostScript vs PCL
    • QRadar vs Splunk
    • Qlik Sense vs Tableau
    • DigitalOcean vs Google Cloud
    • PostgreSQL vs Elasticsearch
    • Redshift vs blueshift
    • Gitlab vs Azure DevOps

Related Courses

Online Data Science Course

Online Tableau Training

Azure Training Course

Hadoop Certification Course

Data Visualization Courses

All in One Data Science Course

Data Analytics vs Predictive Analytics

By Priya PedamkarPriya Pedamkar

Data Analytics Vs Predictive Analytics

Difference Between  Data Analytics vs Predictive Analytics

Analytics is the use of data, machine learning, statistical analysis and mathematical or computer-based models to get improved insight and make better decisions. Analytics is defined as “a process of transforming data into actions through analysis and insight in the context of organizational decision making and problem-solving.” Analytics is supported by many tools such as Microsoft Excel, SAS, R, Python(libraries). Let us learn both Data Analytics and Predictive Analytics in detail in this post.

There are mainly three types of analytics: – descriptive analytics, predictive analytics, and Prescriptive analytics.

Data Analytics Vs Predictive AnalyticsSource: Google Image

Descriptive Analytics: This type of analytics is used to summarize or turn data into relevant information. In other words, it summarized what has occurred. This type of analytics has some meaningful impact but won’t be much helpful in forecasting.

Start Your Free Data Science Course

Hadoop, Data Science, Statistics & others

Predictive Analytics: – Predictive analytics involves advanced statistical, modeling, data mining and one or more machine learning techniques to dig into data and allows analysts to make predictions. Predictive analytics is used to forecast what will happen in future.

Prescriptive Analytics: – This form of analytics is one step above of descriptive and Predictive Analytics. With this type of analytics, we are able to predict the possible consequences based on different choices possible for an action, it can also be used to find the best course of action for any pre-specified outcome.

Head to Head Comparison Between Data Analytics and Predictive Analytics (Infographics)

Below is the Top 6 Comparison between Data Analytics and Predictive Analytics:

Data Analytics Vs Predictive Analytics Infographics

Key Differences Between Data Analytics and Predictive Analytics

Let’s understand few differences between Data Analytics and Predictive Analytics similarly looking terminologies:

All in One Data Science Bundle(360+ Courses, 50+ projects)
Python TutorialMachine LearningAWSArtificial Intelligence
TableauR ProgrammingPowerBIDeep Learning
Price
View Courses
360+ Online Courses | 50+ projects | 1500+ Hours | Verifiable Certificates | Lifetime Access
4.7 (86,408 ratings)
  1. Data analytics (DA) involves processing and examining of data sets in order to draw conclusions about the information those data sets consists of. Predictive analytics helps to predict the future by inspecting historical data thoroughly, detecting patterns or relationships in these data, and then conclude these relationships in time.
  2. Data analytics uses tools and techniques to enable businesses to make more informed, real-time and pragmatic business decisions. Predictive analytics can predict risk and find a relationship in data not readily apparent with traditional analysis.
  3. Data analytics involves finding hidden patterns in a large amount of dataset to segment and group data into logical sets to find behavior and detect trends whereas Predictive analytics involves the use of some of the advanced analytics techniques.
  4. Using Data Analytics, in general, Data scientists and researchers verify or disprove scientific models, theories, and hypotheses. Whereas Predictive analytics, with increased use of specialized systems and software, help Data scientists and researchers to bring confidence into predictions and possible outcomes.
  5. Data Analytics is the science of using raw data and generating purposeful information with a defined objective which brings conclusions about that information. Data Analytics uses traditional algorithmic or mechanical process to build deep insights. For example, running through a number of data sets to look for meaningful correlations between each other. Whereas Predictive analytics uses advanced computational models and algorithms for intelligently building a forecast or prediction platform, for example, a commodities trader might wish to predict short-term movements in commodities prices, collection analytics, fraud detection etc.
  6. For working in Data Analytics one needs strong statistical knowledge though for working in Predictive analytics segment one needs to have strong technical knowledge along with fundamental statistical knowledge as well. He / She may be required to use and work on technological tools like SAS, R and Hadoop.
  7. Data analytics is generally used for business-to-consumer (B2C) applications. Many organizations collect, stores, analyze and cleanse data associated with their customers, business partners, market competitors etc. Data Analytics is then used to study trends and patterns. Predictive analytics facilitates future decision-making. For example, a social networking site collects data related to its users regarding their interests, community likings, and others segment preferences according to a specified criterion such as age, gender and most important demographics. Predictive analytics reveals most probabilistic future product buy or preferred shopping items for such users.

Data Analytics and Predictive Analytics Comparison Table

The comparison table between Data Analytics and Predictive Analytics are explained.

Basis for Comparison Data Analytics Predictive Analytics
Form

 

 

Data analytics is ‘general’ form of Analytics used in businesses to make decisions which are data driven. Predictive analytics is ‘specialized’ form of Analytics used by businesses to predict future based outcomes.
Structure Data Analytics consists of data collection and data analysis in general and could have one or more usage. Predictive analytics consists of Defining a Project and data collection, Statistical Modelling, Analysis and Monitoring and then predicting an outcome
Data

 

Raw data is churned to get clean data for doing Data Analytics. Clean Data is provided for doing Predictive Analytics
Sequence Data Analytics is sequenced as following steps – collect, inspect, cleaning, transforming the data, and reach to conclusions. Predictive Analytics is sequenced as following steps – Model the Data, Trained the Model, Predict and Forecast the outcome.
Outcome

 

 

 

Outcome of Data Analytics could be predictive or not, it depends on the business case requirements. Predictive analysis allows us to declare assumptions, hypothesis and tests them using statistical models. After that predictive model gives you an ability to create an exact model about future.
Usage Data Analytics, in general, can be used to find hidden patterns, unidentified correlations, customer preferences, market trends and other useful information that can help to make more informed decisions for businesses. Predictive analytics helps to answer questions such as “what will happen if demand goes down by 10% or if supplier prices go up by 5%?” “What do we presume to pay for fuel for next few months?” What will be the risk of losing money in a new business enterprise?”

Conclusion

Today huge data is collected across organizations. This data could be related to customers, business partners, applications users, visitors, internal employees and external stakeholders etc. This data is churned and categorized to find and analyze patterns. Data analytics refers to various tools and techniques involving qualitative and quantitative methods and processes, which utilizes this collected data and generates an outcome which is used to enhance efficiency, productivity, reduce risk and increase business gain.  Data analytics techniques vary from organization to organizational according to their requirements.

Predictive Analytics as a subset of Data analytics is a specialized decision-making tool which uses advanced technological assets and progressive statistical based algorithms and models to generate future predictions so that business can focus and spend their money and energies towards more positive and expected outcomes.

Recommended Articles

This has been a guide to Data Analytics vs Predictive Analytics. Here we have discussed Data Analytics vs Predictive Analytics head to head comparison, key difference along with infographics and comparison table. You may also look at the following articles to learn more –

  1. Business Analytics vs Business Intelligence -Differences?
  2. Business Intelligence vs Data analytics – Which is More Useful
  3. Predictive Analytics vs Data Science – Learn The 8 Useful Comparison
  4. Data visualisation vs Data analytics – 7 Best Things You Need To Know
  5. 7 Most Useful Comparison Between Business Analytics Vs Predictive Analytics
Popular Course in this category
Predictive Modeling Training (2 Courses, 15+ Projects)
  2 Online Course |  15 Hands-on Projects |  79+ Hours |  Verifiable Certificate of Completion
4.7
Price

View Course

Related Courses

Data Scientist Training (85 Courses, 67+ Projects)4.9
Tableau Training (8 Courses, 8+ Projects)4.8
Azure Training (6 Courses, 5 Projects, 4 Quizzes)4.7
Hadoop Training Program (20 Courses, 14+ Projects, 4 Quizzes)4.7
Data Visualization Training (15 Courses, 5+ Projects)4.7
All in One Data Science Bundle (360+ Courses, 50+ projects)4.7
2 Shares
Share
Tweet
Share
Primary Sidebar
Footer
About Us
  • Blog
  • Who is EDUCBA?
  • Sign Up
  • Live Classes
  • Corporate Training
  • Certificate from Top Institutions
  • Contact Us
  • Verifiable Certificate
  • Reviews
  • Terms and Conditions
  • Privacy Policy
  •  
Apps
  • iPhone & iPad
  • Android
Resources
  • Free Courses
  • Database Management
  • Machine Learning
  • All Tutorials
Certification Courses
  • All Courses
  • Data Science Course - All in One Bundle
  • Machine Learning Course
  • Hadoop Certification Training
  • Cloud Computing Training Course
  • R Programming Course
  • AWS Training Course
  • SAS Training Course

ISO 10004:2018 & ISO 9001:2015 Certified

© 2022 - EDUCBA. ALL RIGHTS RESERVED. THE CERTIFICATION NAMES ARE THE TRADEMARKS OF THEIR RESPECTIVE OWNERS.

EDUCBA
Free Data Science Course

SPSS, Data visualization with Python, Matplotlib Library, Seaborn Package

*Please provide your correct email id. Login details for this Free course will be emailed to you

By signing up, you agree to our Terms of Use and Privacy Policy.

EDUCBA Login

Forgot Password?

By signing up, you agree to our Terms of Use and Privacy Policy.

EDUCBA
Free Data Science Course

Hadoop, Data Science, Statistics & others

*Please provide your correct email id. Login details for this Free course will be emailed to you

By signing up, you agree to our Terms of Use and Privacy Policy.

EDUCBA

*Please provide your correct email id. Login details for this Free course will be emailed to you

By signing up, you agree to our Terms of Use and Privacy Policy.

Let’s Get Started

By signing up, you agree to our Terms of Use and Privacy Policy.

This website or its third-party tools use cookies, which are necessary to its functioning and required to achieve the purposes illustrated in the cookie policy. By closing this banner, scrolling this page, clicking a link or continuing to browse otherwise, you agree to our Privacy Policy

Loading . . .
Quiz
Question:

Answer:

Quiz Result
Total QuestionsCorrect AnswersWrong AnswersPercentage

Explore 1000+ varieties of Mock tests View more