EDUCBA Logo

EDUCBA

MENUMENU
  • Explore
    • EDUCBA Pro
    • PRO Bundles
    • Featured Skills
    • New & Trending
    • Fresh Entries
    • Finance
    • Data Science
    • Programming and Dev
    • Excel
    • Marketing
    • HR
    • PDP
    • VFX and Design
    • Project Management
    • Exam Prep
    • All Courses
  • Blog
  • Enterprise
  • Free Courses
  • Log in
  • Sign Up
Home Data Science Data Science Tutorials Data Structures Tutorial AVL Tree in Data Structure
 

AVL Tree in Data Structure

Savi Jagga
Article bySavi Jagga
EDUCBA
Reviewed byRavi Rathore

Updated March 23, 2023

avl tree in data structure

 

 

Introduction to AVL Tree in Data Structure

AVL tree stands for Adelson, Velskii & Landis Tree, and it can be explained as an extension of the binary search tree data structure. Though it’s similar to a binary search tree, there is one highlight of a difference that is the height of the tree value should be <=1, and unlike the binary search tree, AVL has the elements in both sides of the tree to be balanced. The formula to represent the balancing factor is ‘Balance Factor = height (left – subtree) − height (right – subtree)’. The AVL tree structuring is implemented with the three basic data structure operations, namely search, insert and delete.

Watch our Demo Courses and Videos

Valuation, Hadoop, Excel, Mobile Apps, Web Development & many more.

Balance Factor = height(left-subtree) − height(right-subtree)

E.g., Consider the following trees.

Balance factor

In the above example, the height of right sub-tree = 2 and left =3 thus BF= 2 that is <=1 thus tree is said to be balanced.

Why do we need an AVL tree in DS?

While working with Binary Search Tree, we come across a scenario where are the elements are in sorted order. In such cases, all the array elements are arranged on one side of the root, which leads to an increase in the time complexity of searching an element in an array and complexity becomes- O(n), i.e. worst-case complexity of the tree. To resolve such issues and decrease the searching time, AVL trees were invented by Adelson, Velski & Landis.

Example:

AVL Tree

In the above figure, Height of left subtree = 3 was as

Height of right subtree = 0

Thus Balance Factor = 3-0 = 3 . Thus searching for an element in such a tree has O(n) of complexity which is similar to linear search. To avoid that complex search AVL tree was introduced where every node in the tree needs to maintain

balance factor <=1, otherwise various rotation techniques are to be performed to balance such tree.

Struct AVLNode
{
int data;
struct AVLNode *left, *right;
int ball factor;
};

Types of Rotations

When the tree’s balance factor does not satisfy <=1 condition, then rotations need to be performed on them to turn it into a balanced tree.

There are 4 types of rotations:

1. Left Rotation: If the addition of a node to the tree’s right makes it imbalance then, in that case, Left Rotation needs to be performed.

2. Right Rotation: If the addition of a node to the left of the tree makes the node imbalance then Right Rotation needs to be performed. In other words, When the number of nodes increases on the left side, then there emerges a need to shift the elements to the right side to balance it thus it is said to be Right Rotation.

3. Left-Right Rotation: This type of rotation is a combination of the above 2 rotations explained. This type of rotation occurs when one element is added to the right subtree of a left tree.

In such a case first, perform left rotation on the subtree followed by a right rotation of the left tree.

4. Right-Left Rotation: This type of rotation is also composed of a sequence of above 2 rotations. This type of rotation is needed when an element is added to the left of the right subtree, and the tree becomes imbalanced. In such a case, we first perform right rotation on the right subtree and then left rotation on the right tree.

Operations on AVL tree in DS

Below 3 operations that can be performed on the AVL tree:-

1. Search

This operation is similar to performing a search in Binary Search Tree. Steps followed are as below:

  • Read the element provided by the user say x.
  • Compare the root element, if it is the same, then exit otherwise go to the next step.
  • If x<root element: go to left child, and compare again.

Else go to the right child and compare again.

Follow processes B and C until you find the element and exit.

This process has O(log n) complexity.

Example:

AVL Tree Consider this Tree, where we need to perform a search for node value 9.
First- let x=9, root value (12) > x then, the value must be in the root element’s left subtree.
AVL Tree Now x is compared with node value 3
x> 3 thus we must proceed towards the right subtree.
AVL Tree Now x is compared with node (9) , where 9 == 9 returns true. Thus, element searching completes in the tree.

2. Insertion

While inserting an element in the AVL tree, we need to find the location particular element that needs to be inserted. Then the element is attached the same as an insertion in BST, but after that, it is checked if the tree is still balanced or not, i.e. balance factor of a node is <=1. And particular rotations are performed as required.

Complexity is O(log n).
Example: Consider the below tree,

AVL Tree Every node has a balance factor as 0,-1 or 1 thus tree is balanced. Now lets what happens when a node with value 1 is inserted.
The first tree is traversed to find the location where it needs to be inserted…
1<2 thus is written as a left child of the node(2).
AVL Tree After insertion, the node (9) becomes unbalance with a balance factor = 2. Now it is subjected to undergo right rotation.
Right Rotation A tree becomes balance after Right rotation, and thus Insertion operation is completed successfully.

3. Deletion

Deleting an element in the AVL tree also comprises searching an element in the tree and then deleting it. The search operation is the same as BST, and after finding the element to be deleted element is removed from the tree and elements are adjusted to make it BST again. After these elements are checked to have a balance factor of 0,-1 or 1, suitable rotations are performed to make it balanced.

Complexity if O(log n).

First Tree Consider the given tree, whose all have a balance factor of 0,-1 or 1.
Now let us delete a node with value 16.
The first tree is traversed to find the node with value 16 same as a searching algorithm.
Left Subtree Node 16 will be replaced with the inorder predecessor of this node that is the largest element from left subtree, i.e. 12
The tree has become unbalanced thus LL – rotation needs to be performed.
Node Balance Now each node has become balanced.

Conclusion – AVL Tree in Data Structure

AVL tree is a descendant of Binary Search Tree but overcomes its drawback of increasing complexity if the elements are sorted. It monitors the balance factor of the tree to be 0 or 1 or -1. In case it tree becomes unbalanced corresponding rotation techniques are performed to balance the tree.

Recommended Articles

This is a guide to AVL Tree in Data Structure. Here we discuss the Introduction, Operations on AVL tree in DS and Types of Rotations. You can also go through our other related articles to learn more–

  1. jQuery Elements
  2. What is Data Science
  3. Types of Trees in Data Structure
  4. C# Data Types
  5. What is Data Structure? | Types and Examples
  6. Top 17 Types of Graph in Data Structure
  7. Learn the Queue in Data Structure

Primary Sidebar

Footer

Follow us!
  • EDUCBA FacebookEDUCBA TwitterEDUCBA LinkedINEDUCBA Instagram
  • EDUCBA YoutubeEDUCBA CourseraEDUCBA Udemy
APPS
EDUCBA Android AppEDUCBA iOS App
Blog
  • Blog
  • Free Tutorials
  • About us
  • Contact us
  • Log in
Courses
  • Enterprise Solutions
  • Free Courses
  • Explore Programs
  • All Courses
  • All in One Bundles
  • Sign up
Email
  • [email protected]

ISO 10004:2018 & ISO 9001:2015 Certified

© 2025 - EDUCBA. ALL RIGHTS RESERVED. THE CERTIFICATION NAMES ARE THE TRADEMARKS OF THEIR RESPECTIVE OWNERS.

EDUCBA

*Please provide your correct email id. Login details for this Free course will be emailed to you
Loading . . .
Quiz
Question:

Answer:

Quiz Result
Total QuestionsCorrect AnswersWrong AnswersPercentage

Explore 1000+ varieties of Mock tests View more

EDUCBA

*Please provide your correct email id. Login details for this Free course will be emailed to you
EDUCBA
Free Data Science Course

Hadoop, Data Science, Statistics & others

By continuing above step, you agree to our Terms of Use and Privacy Policy.
*Please provide your correct email id. Login details for this Free course will be emailed to you
EDUCBA

*Please provide your correct email id. Login details for this Free course will be emailed to you

EDUCBA Login

Forgot Password?

🚀 Limited Time Offer! - 🎁 ENROLL NOW