EDUCBA

EDUCBA

MENUMENU
  • Free Tutorials
  • Free Courses
  • Certification Courses
  • 360+ Courses All in One Bundle
  • Login
Home Data Science Data Science Tutorials Machine Learning Tutorial Neural Network Algorithms
Secondary Sidebar
Machine Learning Tutorial
  • Algorithms
    • Machine Learning Algorithms
    • Apriori Algorithm in Machine Learning
    • Types of Machine Learning Algorithms
    • Bayes Theorem
    • AdaBoost Algorithm
    • Classification Algorithms
    • Clustering Algorithm
    • Gradient Boosting Algorithm
    • Mean Shift Algorithm
    • Hierarchical Clustering Algorithm
    • Hierarchical Clustering Agglomerative
    • What is a Greedy Algorithm?
    • What is Genetic Algorithm?
    • Random Forest Algorithm
    • Nearest Neighbors Algorithm
    • Weak Law of Large Numbers
    • Ray Tracing Algorithm
    • SVM Algorithm
    • Naive Bayes Algorithm
    • Neural Network Algorithms
    • Boosting Algorithm
    • XGBoost Algorithm
    • Pattern Searching
    • Loss Functions in Machine Learning
    • Decision Tree in Machine Learning
    • Hyperparameter Machine Learning
    • Unsupervised Machine Learning
    • K- Means Clustering Algorithm
    • KNN Algorithm
    • Monty Hall Problem
  • Basic
    • Introduction To Machine Learning
    • What is Machine Learning?
    • Uses of Machine Learning
    • Applications of Machine Learning
    • Naive Bayes in Machine Learning
    • Dataset Labelling
    • DataSet Example
    • Deep Learning Techniques
    • Dataset ZFS
    • Careers in Machine Learning
    • What is Machine Cycle?
    • Machine Learning Feature
    • Machine Learning Programming Languages
    • What is Kernel in Machine Learning
    • Machine Learning Tools
    • Machine Learning Models
    • Machine Learning Platform
    • Machine Learning Libraries
    • Machine Learning Life Cycle
    • Machine Learning System
    • Machine Learning Datasets
    • Machine Learning Certifications
    • Machine Learning Python vs R
    • Optimization for Machine Learning
    • Types of Machine Learning
    • Machine Learning Methods
    • Machine Learning Software
    • Machine Learning Techniques
    • Machine Learning Feature Selection
    • Ensemble Methods in Machine Learning
    • Support Vector Machine in Machine Learning
    • Decision Making Techniques
    • Restricted Boltzmann Machine
    • Regularization Machine Learning
    • What is Regression?
    • What is Linear Regression?
    • Dataset for Linear Regression
    • Decision tree limitations
    • What is Decision Tree?
    • What is Random Forest
  • Supervised
    • What is Supervised Learning
    • Supervised Machine Learning
    • Supervised Machine Learning Algorithms
    • Perceptron Learning Algorithm
    • Simple Linear Regression
    • Polynomial Regression
    • Multivariate Regression
    • Regression in Machine Learning
    • Hierarchical Clustering Analysis
    • Linear Regression Analysis
    • Support Vector Regression
    • Multiple Linear Regression
    • Linear Algebra in Machine Learning
    • Statistics for Machine Learning
    • What is Regression Analysis?
    • Clustering Methods
    • Backward Elimination
    • Ensemble Techniques
    • Bagging and Boosting
    • Linear Regression Modeling
    • What is Reinforcement Learning
  • Classification
    • Kernel Methods in Machine Learning
    • Clustering in Machine Learning
    • Machine Learning Architecture
    • Automation Anywhere Architecture
    • Machine Learning C++ Library
    • Machine Learning Frameworks
    • Data Preprocessing in Machine Learning
    • Data Science Machine Learning
    • Classification of Neural Network
    • Neural Network Machine Learning
    • What is Convolutional Neural Network?
    • Single Layer Neural Network
    • Kernel Methods
    • Forward and Backward Chaining
    • Forward Chaining
    • Backward Chaining
  • Deep Learning
    • What Is Deep learning
    • Overviews Deep Learning
    • Application of Deep Learning
    • Careers in Deep Learnings
    • Deep Learning Frameworks
    • Deep Learning Model
    • Deep Learning Algorithms
    • Deep Learning Technique
    • Deep Learning Networks
    • Deep Learning Libraries
    • Deep Learning Toolbox
    • Types of Neural Networks
    • Convolutional Neural Networks
    • Create Decision Tree
    • Deep Learning for NLP
    • Caffe Deep Learning
    • Deep Learning with TensorFlow
  • RPA
    • What is RPA
    • What is Robotics?
    • Benefits of RPA
    • RPA Applications
    • Types of Robots
    • RPA Tools
    • Line Follower Robot
    • What is Blue Prism?
    • RPA vs BPM
  • Interview Questions
    • Deep Learning Interview Questions And Answer
    • Machine Learning Cheat Sheet

Related Courses

Machine Learning Training

Deep Learning Training

Artificial Intelligence Training

Neural Network Algorithms

By Priya PedamkarPriya Pedamkar

Neural Network Algorithms

Introduction to Neural Network Algorithms

The following article provides an outline for Neural Network Algorithms. Let’s first know what does a Neural Network mean? Neural networks are inspired by the biological neural networks in the brain, or we can say the nervous system. It has generated a lot of excitement, and research is still going on this subset of Machine Learning in the industry. The basic computational unit of a neural network is a neuron or node. It receives values from other neurons and computes the output. Each node/neuron is associated with weight(w). This weight is given as per the relative importance of that particular neuron or node.

So, if we take f as the node function, then the node function f will provide output as shown below:

Output of neuron(Y) = f(w1.X1 +w2.X2 +b)

  • Where w1 and w2 are weight, X1 and X2 are numerical inputs, whereas b is the bias.
  • The above function f is a non-linear function also called the activation function. Its basic purpose is to introduce non-linearity as almost all real-world data is non-linear, and we want neurons to learn these representations.

Different Neural Network Algorithms

Given below are the four different algorithms:

Start Your Free Data Science Course

Hadoop, Data Science, Statistics & others

1. Gradient Descent

It is one of the most popular optimization algorithms in the field of machine learning. It is used while training a machine learning model. In simple words, It is basically used to find values of the coefficients that simply reduce the cost function as much as possible. First of all, we start by defining some parameter values, and then by using calculus, we start to iteratively adjust the values so that the lost function is reduced.

Now, let’s come to the part of what is gradient?. So, a gradient means by much the output of any function will change if we decrease the input by little or in other words, we can call it to the slope. If the slope is steep, the model will learn faster similarly; a model stops learning when the slope is zero. This is because it is a minimization algorithm that minimizes a given algorithm.

All in One Data Science Bundle(360+ Courses, 50+ projects)
Python TutorialMachine LearningAWSArtificial Intelligence
TableauR ProgrammingPowerBIDeep Learning
Price
View Courses
360+ Online Courses | 50+ projects | 1500+ Hours | Verifiable Certificates | Lifetime Access
4.7 (86,408 ratings)

Below the formula for finding the next position is shown in the case of gradient descent.

Formula

Where b is the next position,

a is the current position; gamma is awaiting function.

So, as you can see, gradient descent is a very sound technique, but there are many areas where gradient descent does not work properly.

Below some of them are provided:

  • If the algorithm is not executed properly then we may encounter something like the problem of vanishing gradient. These occur when the gradient is too small or too large.
  • Problems come when data arrangement poses a non-convex optimization problem. Gradient descent works only with problems which are the convex optimized problem.
  • One of the very important factors to look for while applying this algorithm is resources. If we have less memory assigned for the application, We should avoid gradient descent algorithm.

2. Newton’s Method

It is a second-order optimization algorithm. It is called a second-order because it makes use of the Hessian matrix. So, the Hessian matrix is nothing but a squared matrix of second-order partial derivatives of a scalar-valued function. In Newton’s method optimization algorithm, It is applied to the first derivative of a double differentiable function f so that it can find the roots/stationary points. Let’s now get into the steps required by Newton’s method for optimization.

It first evaluates the loss index. It then checks whether the stopping criteria is true or false. If false, it then calculates Newton’s training direction and the training rate and then improves the parameters or weights of the neuron, and again the same cycle continues. So, you can now say that it takes fewer steps as compared to gradient descent to get the minimum value of the function. Though it takes fewer steps as compared to the gradient descent algorithm still it is not used widely as the exact calculation of hessian and its inverse are computationally very expensive.

3. Conjugate Gradient

It is a method that can be regarded as something between gradient descent and Newton’s method. The main difference is that it accelerates the slow convergence, which we generally associate with gradient descent. Another important fact is that it can be used for both linear as well as non-linear systems, and it is an iterative algorithm.

It was developed by Magnus Hestenes and Eduard Stiefel. As already mentioned above that it produces faster convergence than gradient descent; the reason it is able to do it is that in the Conjugate Gradient algorithm, the search is done along with the conjugate directions, due to which it converges faster than gradient descent algorithms. One important point to note is that γ is called the conjugate parameter.

The training direction is periodically reset to the negative of the gradient. This method is more effective than gradient descent in training the neural network as it does not require the Hessian matrix, which increases the computational load, and it also convergences faster than gradient descent. It is appropriate to use in large neural networks.

4. Quasi-Newton Method

It is an alternative approach to Newton’s method as we are aware now that Newton’s method is computationally expensive. This method solves those drawbacks to an extent such that instead of calculating the Hessian matrix and then calculating the inverse directly, this method builds up an approximation to inverse Hessian at each iteration of this algorithm.

Now, this approximation is calculated using the information from the first derivative of the loss function. So, we can say that it is probably the best-suited method to deal with large networks as it saves computation time, and also, it is much faster than gradient descent or conjugate gradient method.

Conclusion

Let’s compare the computational speed and memory for the above-mentioned algorithms. As per memory requirements, gradient descent requires the least memory, and it is also the slowest. On the contrary to that Newton’s method requires more computational power. So taking all these into consideration, the Quasi-Newton method is the best suited.

Recommended Articles

This has been a guide to Neural Network Algorithms. Here we also discuss the overview of the Neural Network Algorithm along with four different algorithms, respectively. You can also go through our other suggested articles to learn more –

  1. PyTorch Neural Network
  2. Neural Networks vs Deep Learning
  3. Overfitting Neural Network
  4. Guide to DNN Neural Network
Popular Course in this category
Machine Learning Training (20 Courses, 29+ Projects)
  19 Online Courses |  29 Hands-on Projects |  178+ Hours |  Verifiable Certificate of Completion
4.7
Price

View Course

Related Courses

Deep Learning Training (18 Courses, 24+ Projects)4.9
Artificial Intelligence AI Training (5 Courses, 2 Project)4.8
0 Shares
Share
Tweet
Share
Primary Sidebar
Footer
About Us
  • Blog
  • Who is EDUCBA?
  • Sign Up
  • Live Classes
  • Corporate Training
  • Certificate from Top Institutions
  • Contact Us
  • Verifiable Certificate
  • Reviews
  • Terms and Conditions
  • Privacy Policy
  •  
Apps
  • iPhone & iPad
  • Android
Resources
  • Free Courses
  • Database Management
  • Machine Learning
  • All Tutorials
Certification Courses
  • All Courses
  • Data Science Course - All in One Bundle
  • Machine Learning Course
  • Hadoop Certification Training
  • Cloud Computing Training Course
  • R Programming Course
  • AWS Training Course
  • SAS Training Course

ISO 10004:2018 & ISO 9001:2015 Certified

© 2022 - EDUCBA. ALL RIGHTS RESERVED. THE CERTIFICATION NAMES ARE THE TRADEMARKS OF THEIR RESPECTIVE OWNERS.

EDUCBA
Free Data Science Course

SPSS, Data visualization with Python, Matplotlib Library, Seaborn Package

*Please provide your correct email id. Login details for this Free course will be emailed to you

By signing up, you agree to our Terms of Use and Privacy Policy.

EDUCBA Login

Forgot Password?

By signing up, you agree to our Terms of Use and Privacy Policy.

EDUCBA
Free Data Science Course

Hadoop, Data Science, Statistics & others

*Please provide your correct email id. Login details for this Free course will be emailed to you

By signing up, you agree to our Terms of Use and Privacy Policy.

EDUCBA

*Please provide your correct email id. Login details for this Free course will be emailed to you

By signing up, you agree to our Terms of Use and Privacy Policy.

Let’s Get Started

By signing up, you agree to our Terms of Use and Privacy Policy.

This website or its third-party tools use cookies, which are necessary to its functioning and required to achieve the purposes illustrated in the cookie policy. By closing this banner, scrolling this page, clicking a link or continuing to browse otherwise, you agree to our Privacy Policy

Loading . . .
Quiz
Question:

Answer:

Quiz Result
Total QuestionsCorrect AnswersWrong AnswersPercentage

Explore 1000+ varieties of Mock tests View more