EDUCBA

EDUCBA

MENUMENU
  • Free Tutorials
  • Free Courses
  • Certification Courses
  • 360+ Courses All in One Bundle
  • Login

Machine Learning Tools

By Swati TawdeSwati Tawde

Home » Data Science » Data Science Tutorials » Machine Learning Tutorial » Machine Learning Tools

machine learning tool

Introduction to Machine Learning Tools

Machine learning tools (Caffee 2, Scikit-learn, Keras, Tensorflow, etc.) are defined as the artificial intelligence algorithmic applications that give the system the ability to understand and improve without being explicitly programmed as these tools are capable of performing complex processing tasks such as the awareness of images, speech-to-text, generating natural languages, etc. These tools are used for applications in which training wheels (where the individual schedules input and the desired output) are used the termed as supervised algorithm while the tools without training wheels are unsupervised algorithms and the selection of these machine learning tools entirely depends upon the type of algorithm that needs to be used for the application.

What is Machine Learning Tool?

Machine learning tools are artificial intelligence-algorithmic applications that provide systems with the ability to understand and improve without considerable human input. It enables software, without being explicitly programmed, to predict results more accurately.

Start Your Free Data Science Course

Hadoop, Data Science, Statistics & others

It with training wheels are supervised algorithms. They require an individual to schedule both the input and the desired output and provide feedback on the accuracy of the end results. Unsupervised algorithms demand very little human intervention by employing a “deep learning” approach in order to check massive databases and arrive at conclusions from previous example-based data of training; they are thus generally used for more complex processing tasks, such as the awareness of images, speech-to-text and generating natural languages.

Machine Learning Tools consists of:

  • Preparation and data collection
  • Building models
  • Application deployment and training

Local Tools for Telecommunication and Remote Learning

We can compare machine learning tools with local and remote. You can download and install a local tool and use it locally, but a remote tool runs on an external server.

1. Local Tools

You can download, install and run a local tool in your local environment.

Characteristics of Local Tools are as follows:

  • Adapted for data and algorithms in memory.
  • Configuration and parameterisation execution control.
  • Integrate your systems to satisfy your requirements.

Examples of Local Tools are Shogun, Golearn for Go, etc.

Popular Course in this category
Sale
Machine Learning Training (19 Courses, 29+ Projects)19 Online Courses | 29 Hands-on Projects | 178+ Hours | Verifiable Certificate of Completion | Lifetime Access
4.7 (13,314 ratings)
Course Price

View Course

Related Courses
Deep Learning Training (15 Courses, 24+ Projects)Artificial Intelligence Training (5 Courses, 2 Project)

2. Remote Tools

This tool is hosted from the server and called to your local environment. These instruments are often called Machine Learning as a Service (MLaaS).

  • Customized for larger datasets to run on a scale.
  • Execute multiple devices, multiple nuclei, and shared storage.
  • Simpler interfaces provide less configuration control and parameterizing of the algorithm.

Examples of these Tools are Machine Learning in AWS, Prediction in Google, Apache Mahout, etc.

Tools for Machine Learning

Given below are the different tools for machine learning:

tensorflow

1. TensorFlow

This is a machine learning library from Google Brain of Google’s AI organization released in 2015. Tensor Flow allows you to create your own libraries. We can also use C++ and python language because of flexibility. An important characteristic of this library is that data flow diagrams are used to represent numerical computations with the help of nodes and edges. Mathematical operations are represented by nodes, whereas edges denote multidimensional data arrays on which operations are performed. TensorFlow is used by many famous companies like eBay, Twitter, Dropbox, etc. It also provides great development tools, especially in Android.

keras

2. Keras

Keras is a deep-learning Python library that can run on top of Theano, TensorFlow. Francois Chollet, a member of the Google Brain team, developed it to give data scientists the ability to run machine learning programs fast. Because of using the high-level, understandable interface of the library and dividing networks into sequences of separate modules, rapid prototyping is possible. It is more popular because of the user interface, ease of extensibility, and modularity. It runs on CPU as well as GPU.
scikit learn

3. Scikit-learn

Scikit-learn, which was first released in 2007, is an open-source library for machine learning. Python is a scripting language of this framework and includes several models of machine learning such as classification, regression, clustering, and reduction of dimensionality. Scikit-learn is designed on three open-source projects — Matplotlib, NumPy, and SciPy. Scikit-learn provides users with n number of machine learning algorithms. The framework library focuses on data modeling but not on loading, summarizing, manipulating data.
caffe 2

4. Caffe2

Caffe2 is an updated version of Caffe. It is a lightweight, open-source machine learning tool developed by Facebook. It has an extensive machine learning library to run complex models. Also, it supports mobile deployment. This library has C++ and Python API, which allows developers to prototype first, and optimization can be done later.
Machine Learning Tools - apache spark

5. Apache Spark MLlib

Apache Spark MLlib is a distributed framework for machine learning. The Spark core is developed at the top. Apache sparks MLlib is nine-time faster than disk-based implementation. It is used widely as an open-source project which makes focuses on machine learning to make it easy. Apache Spark MLlib has a library for scalable vocational training. MLlib includes algorithms for regression, collaborative filters, clustering, decisions trees, pipeline APIs of higher levels.
Machine Learning Tools - opennn

6. OpenNN

OpenNN is developed by the artificial intelligence company Artelnics. OpenNN is an advanced analytics firmware library written in C++. The most successful method of machine learning is the implementation of neural networks. It is high in performance. The execution speed and memory allocation of this library stand out.

Machine Learning Tools - amazon sagemaker

7. Amazon SageMaker

Amazon SageMaker is a fully managed service that allows data researchers and developers to build, train and implement machine learning models on any scale quickly and easily. Amazon SageMaker supports open-source web application Jupyter notebooks that help developers share live code. These notebooks include drivers, packages, and libraries for common deep learning platforms and frameworks for SageMaker users. Amazon SageMaker optionally encrypts models both during and during transit through AWS Key Management Service, and API requests are performed over a secure connection to the socket layer. SageMaker also stores code in volumes that are protected and encrypted by security groups.

Conclusion

Before developing machine learning applications, it is very important to select a machine learning tool that has extensive libraries, a great user interface, and support for common programming languages. So this has been a guide to Machine learning tools that will help in selecting the required technology.

Recommended Articles

This has been a guide to Machine Learning Tools. Here we have discussed the tools for machine learning and the local tools for telecommunication and remote learning. You can also go through our other suggested articles to learn more-

  1. What is Machine Learning?
  2. Machine Learning Techniques
  3. Careers in Machine Learning
  4. Machine Learning vs Statistics

Machine Learning Training (17 Courses, 27+ Projects)

19 Online Courses

29 Hands-on Projects

178+ Hours

Verifiable Certificate of Completion

Lifetime Access

Learn More

0 Shares
Share
Tweet
Share
Primary Sidebar
Machine Learning Tutorial
  • Basic
    • Introduction To Machine Learning
    • What is Machine Learning?
    • Uses of Machine Learning
    • Applications of Machine Learning
    • Naive Bayes in Machine Learning
    • Dataset Labelling
    • DataSet Example
    • Dataset ZFS
    • Careers in Machine Learning
    • What is Machine Cycle?
    • Machine Learning Feature
    • Machine Learning Programming Languages
    • What is Kernel in Machine Learning
    • Machine Learning Tools
    • Machine Learning Models
    • Machine Learning Platform
    • Machine Learning Libraries
    • Machine Learning Life Cycle
    • Machine Learning System
    • Machine Learning Datasets
    • Top 7 Useful Benefits Of Machine Learning Certifications
    • Machine Learning Python vs R
    • Optimization for Machine Learning
    • Types of Machine Learning
    • Machine Learning Methods
    • Machine Learning Software
    • Machine Learning Techniques
    • Machine Learning Feature Selection
    • Ensemble Methods in Machine Learning
    • Support Vector Machine in Machine Learning
    • Decision Making Techniques
    • Restricted Boltzmann Machine
    • Regularization Machine Learning
    • What is Regression?
    • What is Linear Regression?
    • Dataset for Linear Regression
    • Decision tree limitations
    • What is Decision Tree?
    • What is Random Forest
  • Algorithms
    • Machine Learning Algorithms
    • Apriori Algorithm in Machine Learning
    • Types of Machine Learning Algorithms
    • Bayes Theorem
    • AdaBoost Algorithm
    • Classification Algorithms
    • Clustering Algorithm
    • Gradient Boosting Algorithm
    • Mean Shift Algorithm
    • Hierarchical Clustering Algorithm
    • Hierarchical Clustering Agglomerative
    • What is a Greedy Algorithm?
    • What is Genetic Algorithm?
    • Random Forest Algorithm
    • Nearest Neighbors Algorithm
    • Weak Law of Large Numbers
    • Ray Tracing Algorithm
    • SVM Algorithm
    • Naive Bayes Algorithm
    • Neural Network Algorithms
    • Boosting Algorithm
    • XGBoost Algorithm
    • Pattern Searching
    • Loss Functions in Machine Learning
    • Decision Tree in Machine Learning
    • Hyperparameter Machine Learning
    • Unsupervised Machine Learning
    • K- Means Clustering Algorithm
    • KNN Algorithm
    • Monty Hall Problem
  • Supervised
    • What is Supervised Learning
    • Supervised Machine Learning
    • Supervised Machine Learning Algorithms
    • Perceptron Learning Algorithm
    • Simple Linear Regression
    • Polynomial Regression
    • Multivariate Regression
    • Regression in Machine Learning
    • Hierarchical Clustering Analysis
    • Linear Regression Analysis
    • Support Vector Regression
    • Multiple Linear Regression
    • Linear Algebra in Machine Learning
    • Statistics for Machine Learning
    • What is Regression Analysis?
    • Clustering Methods
    • Backward Elimination
    • Ensemble Techniques
    • Bagging and Boosting
    • Linear Regression Modeling
    • What is Reinforcement Learning
  • Classification
    • Kernel Methods in Machine Learning
    • Clustering in Machine Learning
    • Machine Learning Architecture
    • Automation Anywhere Architecture
    • Machine Learning C++ Library
    • Machine Learning Frameworks
    • Data Preprocessing in Machine Learning
    • Data Science Machine Learning
    • Classification of Neural Network
    • Neural Network Machine Learning
    • What is Convolutional Neural Network?
    • Single Layer Neural Network
    • Kernel Methods
    • Forward and Backward Chaining
    • Forward Chaining
    • Backward Chaining
  • Deep Learning
    • What Is Deep learning
    • Overviews Deep Learning
    • Application of Deep Learning
    • Careers in Deep Learnings
    • Deep Learning Frameworks
    • Deep Learning Model
    • Deep Learning Algorithms
    • Deep Learning Technique
    • Deep Learning Networks
    • Deep Learning Libraries
    • Deep Learning Toolbox
    • Types of Neural Networks
    • Convolutional Neural Networks
    • Create Decision Tree
    • Deep Learning for NLP
    • Caffe Deep Learning
    • Deep Learning with TensorFlow
  • RPA
    • What is RPA
    • What is Robotics?
    • Benefits of RPA
    • RPA Applications
    • Types of Robots
    • RPA Tools
    • Line Follower Robot
    • What is Blue Prism?
    • RPA vs BPM
  • PyTorch
    • PyTorch Tensors
    • What is PyTorch?
    • PyTorch MSELoss()
    • PyTorch NLLLOSS
    • PyTorch MaxPool2d
    • PyTorch Pretrained Models
    • PyTorch Squeeze
    • PyTorch Reinforcement Learning
    • PyTorch zero_grad
    • PyTorch norm
    • PyTorch VAE
    • PyTorch Early Stopping
    • PyTorch requires_grad
    • PyTorch MNIST
    • PyTorch Conv2d
    • Dataset Pytorch
    • PyTorch tanh
    • PyTorch bmm
    • PyTorch profiler
    • PyTorch unsqueeze
    • PyTorch adam
    • PyTorch backward
    • PyTorch concatenate
    • PyTorch Embedding
    • PyTorch Tensor to NumPy
    • PyTorch Normalize
    • PyTorch ReLU
    • PyTorch Autograd
    • PyTorch Transpose
    • PyTorch Object Detection
    • PyTorch Autoencoder
    • PyTorch Loss
    • PyTorch repeat
    • PyTorch gather
    • PyTorch sequential
    • PyTorch U-NET
    • PyTorch Sigmoid
    • PyTorch Neural Network
    • PyTorch Quantization
    • PyTorch Ignite
    • PyTorch Versions
    • PyTorch TensorBoard
    • PyTorch Dropout
    • PyTorch Model
    • PyTorch optimizer
    • PyTorch ResNet
    • PyTorch CNN
    • PyTorch Detach
    • Single Layer Perceptron
    • PyTorch vs Keras
    • torch.nn Module
  • UiPath
    • What is UiPath
    • UiPath Action Center
    • UiPath?Orchestrator
    • UiPath web automation
    • UiPath Orchestrator API
    • UiPath Delay
    • UiPath Careers
    • UiPath Architecture
    • UiPath version
    • Uipath Reframework
    • UiPath Studio
  • Interview Questions
    • Deep Learning Interview Questions And Answer
    • Machine Learning Cheat Sheet

Related Courses

Machine Learning Training

Deep Learning Training

Artificial Intelligence Training

Footer
About Us
  • Blog
  • Who is EDUCBA?
  • Sign Up
  • Live Classes
  • Corporate Training
  • Certificate from Top Institutions
  • Contact Us
  • Verifiable Certificate
  • Reviews
  • Terms and Conditions
  • Privacy Policy
  •  
Apps
  • iPhone & iPad
  • Android
Resources
  • Free Courses
  • Database Management
  • Machine Learning
  • All Tutorials
Certification Courses
  • All Courses
  • Data Science Course - All in One Bundle
  • Machine Learning Course
  • Hadoop Certification Training
  • Cloud Computing Training Course
  • R Programming Course
  • AWS Training Course
  • SAS Training Course

© 2022 - EDUCBA. ALL RIGHTS RESERVED. THE CERTIFICATION NAMES ARE THE TRADEMARKS OF THEIR RESPECTIVE OWNERS.

EDUCBA
Free Data Science Course

Hadoop, Data Science, Statistics & others

*Please provide your correct email id. Login details for this Free course will be emailed to you

By signing up, you agree to our Terms of Use and Privacy Policy.

EDUCBA
Free Data Science Course

Hadoop, Data Science, Statistics & others

*Please provide your correct email id. Login details for this Free course will be emailed to you

By signing up, you agree to our Terms of Use and Privacy Policy.

Let’s Get Started

By signing up, you agree to our Terms of Use and Privacy Policy.

Loading . . .
Quiz
Question:

Answer:

Quiz Result
Total QuestionsCorrect AnswersWrong AnswersPercentage

Explore 1000+ varieties of Mock tests View more

EDUCBA Login

Forgot Password?

By signing up, you agree to our Terms of Use and Privacy Policy.

This website or its third-party tools use cookies, which are necessary to its functioning and required to achieve the purposes illustrated in the cookie policy. By closing this banner, scrolling this page, clicking a link or continuing to browse otherwise, you agree to our Privacy Policy

EDUCBA

*Please provide your correct email id. Login details for this Free course will be emailed to you

By signing up, you agree to our Terms of Use and Privacy Policy.

Special Offer - Machine Learning Training (17 Courses, 27+ Projects) Learn More