Introduction to Machine Learning Frameworks
Machine learning framework has been defined as a tool, library, or interface that gives developers the ease of creating machine learning models. Furthermore, the machine learning framework provides a standard way that the developers use while deploying these applications as the user can selectively change the generic functionality of the frameworks by their application code and thus follows the standard way of development of code.
Top 10 Different Machine Learning Frameworks
Given below are the top 10 different machine learning frameworks:
1. Scikit-Learn
It is a free machine learning library that is built on SciPy (scientific python). It is used very extensively by Python Programmers. David Cournapeau developed it. You can do feature engineering with your data (increasing the number of features), scaling, pre-processing, splitting your data into training and test subsets. It also includes many machine learning algorithms like Linear Regression, Logistic regression, K–mean algorithm, support vector machines. It is very popular because it can easily work with NumPy and SciPy.
2. Tensor Flow
It is also an open-source library that is generally used for deep learning or machine learning algorithms using neural networks. Google creates it. Tensor Flow is a library for data flow programming; It uses various optimization techniques for the calculation of the mathematical expression, which is used to get the desired results.
The salient features of sci-kit learn are:
- It works great with a mathematical expression that involves multidimensional arrays.
- It is highly scalable across machines.
- It works with a wide variety of data sets.
- These features make it a very useful framework for deploying production models.
3. Amazon Machine Learning
As the name suggests, it is provided by Amazon. It is a service that developers can use to create models. It can be used as a visualization tool and can be used by machine learning engineers to create models without knowing every model’s very detail. It can run or create all kinds of models like Binary classification, multi-class classification ensemble algorithms, regression models.
4. Azure ML Studio
This framework comes from Microsoft. So how it works is that it allows registered Azure users to create and train models, and after having done that, you can use them as APIs to be consumed by other services. Users get up to 10GB of storage per account. It supports a wide variety of machine learning algorithms. One very good feature about this is that even if you do not have an account, you can try out the service by logging in to the account anonymously, and you can use ML studio for up to 8 hours.
5. MLib (Spark)
It is Apache Spark’s machine learning product. It contains or supports all types of machine learning algorithms and utilities like regression classification (binary and multi-class), clustering, ensemble and many more.
6. Torch
It is a scientific machine learning framework that supports various machine learning utilities and algorithms. The salient feature of this framework is that it puts GPU first. It has community-driven packages in machine learning, computer vision, image processing, deep learning and many more. Its main is to provide high scalability, flexibility, and speed while creating machine learning models. It is definitely a framework to look for while building machine learning models.
7. Theano
It is built using python. It allows us to define, create and optimize mathematical calculations. Like Torch, It can also use GPU, which helps in optimization and scalability.
8. Veles
It is written in C++, and it is a deep learning framework. Though it is written in C++, It does use python to perform automation. It is mainly used in neural networks like CNN(convolution Neural Networks) recurrent neural networks.
9. H20
The name sounds interesting, but this framework allows us to apply maths and predictive analytics to solve today’s problems.
Moreover, it uses some combines some cool features like:
- Best of Breed Open Source Technology.
- Easy to use WebUI.
- Data Agnostic Support for all common databases.
- Along with using H2o, we can work on with existing languages and also extend it seamlessly with Hadoop.
10. Caffe
It is a deep learning framework that was created using speed, modularity in mind. It is mainly used with neural network problems and was founded by Berkeley Vision and Learning Center.
Conclusion
Every field today produces data, and data needs to be analyzed and modeled using certain algorithms so that it can be used to produce better future results. So, in short, that’s what machine learning does. It is an essential skill of the 21st century, and most of the frameworks are open-source with developer communities. It is one of the growing fields in technology and the IT field.
Recommended Articles
This has been a guide to Machine Learning Frameworks. Here we have discussed the introduction and top 10 different machine learning frameworks. You may also look at the following article to learn more –
- Machine Learning Techniques
- Introduction To Machine Learning
- Neural Network Machine Learning
- Machine Learning Feature Selection
19 Online Courses | 29 Hands-on Projects | 178+ Hours | Verifiable Certificate of Completion
4.7
View Course
Related Courses