EDUCBA

EDUCBA

MENUMENU
  • Free Tutorials
  • Free Courses
  • Certification Courses
  • 360+ Courses All in One Bundle
  • Login

Hyperparameter Machine Learning

Home » Data Science » Data Science Tutorials » Machine Learning Tutorial » Hyperparameter Machine Learning

Hyperparameter Machine Learning

Overview of Hyperparameter Machine Learning

In machine learning, all those parameters are called a hyperparameter, which is explicitly defined by the user to improve the learning of a model. Unlike those parameters that are obtained from the data without being explicitly programmed, these hyperparameters are classified into two forms, first is Hyperparameter optimization which involves (Learning Rate, Batch Size and Number of Epochs) and second Hyperparameter for specific models i.e. (Number of Hidden units, Number layers, etc.)

What is Hyperparameter Machine Learning?

For most of the frameworks in machine learning, Hyperparameters do not have a rigorous definition. These Hyperparameters govern the underlying system of a model that guides the primary (modal) parameters of the model.

Start Your Free Data Science Course

Hadoop, Data Science, Statistics & others

Let us try to understand the Hyperparameters with the following Example.

  • Tuning your violin is very crucial when one is at the learning stage because at that time one creates connections between different senses. Ears, fingers, and eyes are all learning the violin at the same time. Now In beginning Getting used to the sound of the violin out of tone creates a bad taste of sound, which will spoil ones’ entire experience of falling in love with the violin learning process.
  • That is why tuning violin can really assist one in the process of learning the violin. In the same way, hyperparameter is a kind of tuning for the Machine Learning model so as to give the right direction.
  • Hyperparameters are generally defined before applying a machine-learning algorithm to a dataset.
  • Now next task is what should be the hyperparameter and what should be its value. Because one must know what strings are needed to be tuned and how to tune the violin before tuning it. The same applies to hyperparameters, we need to define what hyperparameters and what there should be their value, basically it depends on each task and each dataset.
  • To understand this let’s take the perspective of model optimization.
  • In the implementation of the machine learning model, model optimization plays a vital role. There are a good number of branches of machine learning which are solely dedicated to the optimization of the machine learning model. It is generally perceived that in order to optimize the model we need to modify the code so that the error could be minimized.
  • However, there are hidden elements that affect the machine learning optimization which is outside the model and have a great influence on model behaviour. These hidden elements are referred to as hyperparameters, these are critical components for the optimization of any machine learning model.
  • Hyperparameters are fine tuners/ settings which control the behaviour of a model. These hyperparameters are defined outside of the model but have a direct relationship with model performance. Hyperparameters could be considered as orthogonal to model.
  • The criteria for defining a hyperparameter is very flexible and abstract. Surely there are some hyperparameters like the number of hidden layers, the learning rate of a model which are well established and also there some settings that can be treated as hyperparameter for a specific model, like controlling the capacity of the model.
  • There are chances of the algorithm to overfit a model if algorithms learn through settings directly. As it is clear hyperparameters are not learned/tuned through a training set so a test or validation set is used for the selection of hyperparameters. In broadway we set different hyperparameter values, the one that works best with a test or validation set is considered as our best hyperparameter.

Categories of Hyperparameter

For different types of datasets and according to the model we can have different hyperparameters to boost the performance of the model. Broadly the hyperparameters can be categorized into two categories.

  • Hyperparameter for optimization
  • Hyperparameters for specific models

Let’s discuss each of these.

1. Hyperparameters for Optimization

As the name suggests these hyperparameters are used for the optimization of the model.

  • Learning Rate

This hyperparameter determines how much the newly acquired data will override the old available data. If this hyperparameter’s value is high that is higher learning rate will not optimize the model properly because there are chances it will hop over the minima. On the other hand, if the learning rate is taken very less then convergence will be very slow.

Popular Course in this category
Machine Learning Training (17 Courses, 27+ Projects)17 Online Courses | 27 Hands-on Projects | 159+ Hours | Verifiable Certificate of Completion | Lifetime Access
4.7 (8,463 ratings)
Course Price

View Course

Related Courses
Deep Learning Training (15 Courses, 24+ Projects)Artificial Intelligence Training (3 Courses, 2 Project)

The learning rate plays a crucial role in the optimization of model performance because in some cases models have hundreds of parameters (model parameters) with an error curve, the learning rate will decide the frequency of cross-checking with all the parameters. Also, it’s hard to find the local minima of error curves because they generally have irregular curves.

  • Batch Size

To speed up the learning process the training set is divided into different batches. In the case of the stochastic procedure of training the model, a small batch is trained, evaluated and backpropagated so as to adjust the values of all your hyperparameters, this same is repeated for the whole training set.

If the batch size is larger than it will increase learning time and will require more memory to process for matrix multiplication. If the batch size is smaller than there will be more noise in the error calculation.

  • Number of Epochs

Epoch represents a complete cycle for data to be learned in Machine Learning. Epochs play a very important role in the iterative learning process.

A validation error is considered for determining the right number of epochs. One can increase the number of epochs as long as there is a reduction in a validation error. If validation error doesn’t improve for consecutive epochs, then it is a signal to stop an increasing number of epochs. It is also known as early stopping.

2. Hyperparameters for Specific Models

Some hyperparameters are involved in the structure of the model itself. Some of these are as follows.

  • Number of Hidden Units

It is vital to define a number of hidden units for neural networks in deep learning models. This hyperparameter is used for defining the learning capacity of the model. for complex functions, we must define a number of hidden units, but keep in mind that it should not overfit the model.

  • Number of Layers

It is obvious that a neural network with 3 layers will give better performance than that of 2 layers. Increasing more than 3 doesn’t help that much in neural networks. In the case of CNN, an increasing number of layers makes the model better.

Conclusion

Hyper Parameters are defined explicitly before applying a machine-learning algorithm to a dataset. Hyperparameters are used to define the higher-level complexity of the model and learning capacity. Hyperparameters can also be settings for the model. Some hyperparameters are defined for optimization of the models (Batch size, learning rate, etc.) and some are specific to the models (Number of Hidden layers, etc.).

Recommended Articles

This is a guide to Hyperparameter Machine Learning. Here we discuss the overview and what is hyperparameter machine learning with its categories. You may also look at the following articles to learn more –

  1. Introduction To Machine Learning
  2. Unsupervised Machine Learning
  3. Types of Machine Learning Algorithms
  4. Applications of Machine Learning

Machine Learning Training (17 Courses, 27+ Projects)

17 Online Courses

27 Hands-on Projects

159+ Hours

Verifiable Certificate of Completion

Lifetime Access

Learn More

0 Shares
Share
Tweet
Share
Primary Sidebar
Machine Learning Tutorial
  • Algorithms
    • Machine Learning Algorithms
    • Types of Machine Learning Algorithms
    • Bayes Theorem
    • AdaBoost Algorithm
    • Classification Algorithms
    • Clustering Algorithm
    • Gradient Boosting Algorithm
    • Mean Shift Algorithm
    • Hierarchical Clustering Algorithm
    • What is a Greedy Algorithm?
    • What is Genetic Algorithm?
    • Random Forest Algorithm
    • Nearest Neighbors Algorithm
    • Weak Law of Large Numbers
    • Ray Tracing Algorithm
    • SVM Algorithm
    • Naive Bayes Algorithm
    • Neural Network Algorithms
    • Boosting Algorithm
    • XGBoost Algorithm
    • Pattern Searching
    • Loss Functions in Machine Learning
    • Decision Tree in Machine Learning
    • Hyperparameter Machine Learning
    • Unsupervised Machine Learning
    • K- Means Clustering Algorithm
    • KNN Algorithm
    • Monty Hall Problem
  • Basic
    • Introduction To Machine Learning
    • What is Machine Learning?
    • Uses of Machine Learning
    • Applications of Machine Learning
    • Careers in Machine Learning
    • What is Machine Cycle?
    • Machine Learning Feature
    • Machine Learning Programming Languages
    • Machine Learning Tools
    • Machine Learning Models
    • Machine Learning Platform
    • Machine Learning Libraries
    • Machine Learning Life Cycle
    • Machine Learning System
    • Machine Learning Datasets
    • Types of Machine Learning
    • Machine Learning Methods
    • Machine Learning Software
    • Machine Learning Techniques
    • Machine Learning Feature Selection
    • Ensemble Methods in Machine Learning
    • Decision Making Techniques
    • Restricted Boltzmann Machine
    • Regularization Machine Learning
    • What is Regression?
    • What is Linear Regression?
    • What is Decision Tree?
    • What is Random Forest
  • Supervised
    • What is Supervised Learning
    • Supervised Machine Learning
    • Supervised Machine Learning Algorithms
    • Perceptron Learning Algorithm
    • Simple Linear Regression
    • Polynomial Regression
    • Multivariate Regression
    • Regression in Machine Learning
    • Hierarchical Clustering Analysis
    • Linear Regression Analysis
    • Support Vector Regression
    • Linear Regression Modeling
    • Multiple Linear Regression
    • Linear Algebra in Machine Learning
    • Statistics for Machine Learning
    • What is Regression Analysis?
    • Linear Regression Analysis
    • Clustering Methods
    • Backward Elimination
    • Ensemble Techniques
    • Bagging and Boosting
    • Linear Regression Modeling
    • What is Reinforcement Learning
  • Classification
    • Kernel Methods in Machine Learning
    • Clustering in Machine Learning
    • Machine Learning Architecture
    • Machine Learning C++ Library
    • Machine Learning Frameworks
    • Data Preprocessing in Machine Learning
    • Data Science Machine Learning
    • Classification of Neural Network
    • Neural Network Machine Learning
    • What is Convolutional Neural Network?
    • Single Layer Neural Network
    • Kernel Methods
    • Forward and Backward Chaining
    • Forward Chaining
    • Backward Chaining
  • Deep Learning
    • What Is Deep learning
    • Deep Learning
    • Application of Deep Learning
    • Careers in Deep Learnings
    • Deep Learning Frameworks
    • Deep Learning Model
    • Deep Learning Algorithms
    • Deep Learning Technique
    • Deep Learning Networks
    • Deep Learning Libraries
    • Deep Learning Toolbox
    • Types of Neural Networks
    • Convolutional Neural Networks
    • Create Decision Tree
    • Deep Learning for NLP
    • Caffe Deep Learning
    • Deep Learning with TensorFlow
  • RPA
    • What is RPA
    • What is Robotics?
    • Benefits of RPA
    • RPA Applications
    • Types of Robots
    • RPA Tools
    • Line Follower Robot
    • What is Blue Prism?
    • RPA vs BPM
  • Pytorch
    • PyTorch Versions
    • Single Layer Perceptron
    • PyTorch vs Keras
    • torch.nn Module
  • UiPath
    • What is UiPath
    • UiPath Careers
    • UiPath Architecture
    • UiPath Orchestrator
    • Uipath Reframework
    • UiPath Studio
  • Interview Questions
    • Machine Learning Interview Questions
    • Deep Learning Interview Questions And Answer
    • Machine Learning Cheat Sheet

Related Courses

Machine Learning Training

Deep Learning Training

Artificial Intelligence Training

Footer
About Us
  • Blog
  • Who is EDUCBA?
  • Sign Up
  • Corporate Training
  • Certificate from Top Institutions
  • Contact Us
  • Verifiable Certificate
  • Reviews
  • Terms and Conditions
  • Privacy Policy
  •  
Apps
  • iPhone & iPad
  • Android
Resources
  • Free Courses
  • Database Management
  • Machine Learning
  • All Tutorials
Certification Courses
  • All Courses
  • Data Science Course - All in One Bundle
  • Machine Learning Course
  • Hadoop Certification Training
  • Cloud Computing Training Course
  • R Programming Course
  • AWS Training Course
  • SAS Training Course

© 2020 - EDUCBA. ALL RIGHTS RESERVED. THE CERTIFICATION NAMES ARE THE TRADEMARKS OF THEIR RESPECTIVE OWNERS.

EDUCBA
Free Data Science Course

Hadoop, Data Science, Statistics & others

*Please provide your correct email id. Login details for this Free course will be emailed to you
Book Your One Instructor : One Learner Free Class

Let’s Get Started

This website or its third-party tools use cookies, which are necessary to its functioning and required to achieve the purposes illustrated in the cookie policy. By closing this banner, scrolling this page, clicking a link or continuing to browse otherwise, you agree to our Privacy Policy

EDUCBA

*Please provide your correct email id. Login details for this Free course will be emailed to you
EDUCBA Login

Forgot Password?

EDUCBA
Free Data Science Course

Hadoop, Data Science, Statistics & others

*Please provide your correct email id. Login details for this Free course will be emailed to you

Special Offer - Machine Learning Training (17 Courses, 27+ Projects) Learn More