EDUCBA

EDUCBA

MENUMENU
  • Free Tutorials
  • Free Courses
  • Certification Courses
  • 360+ Courses All in One Bundle
  • Login
Home Data Science Data Science Tutorials Machine Learning Tutorial Unsupervised Machine Learning
Secondary Sidebar
Machine Learning Tutorial
  • Algorithms
    • Machine Learning Algorithms
    • Apriori Algorithm in Machine Learning
    • Types of Machine Learning Algorithms
    • Bayes Theorem
    • AdaBoost Algorithm
    • Classification Algorithms
    • Clustering Algorithm
    • Gradient Boosting Algorithm
    • Mean Shift Algorithm
    • Hierarchical Clustering Algorithm
    • Hierarchical Clustering Agglomerative
    • What is a Greedy Algorithm?
    • What is Genetic Algorithm?
    • Random Forest Algorithm
    • Nearest Neighbors Algorithm
    • Weak Law of Large Numbers
    • Ray Tracing Algorithm
    • SVM Algorithm
    • Naive Bayes Algorithm
    • Neural Network Algorithms
    • Boosting Algorithm
    • XGBoost Algorithm
    • Pattern Searching
    • Loss Functions in Machine Learning
    • Decision Tree in Machine Learning
    • Hyperparameter Machine Learning
    • Unsupervised Machine Learning
    • K- Means Clustering Algorithm
    • KNN Algorithm
    • Monty Hall Problem
  • Basic
    • Introduction To Machine Learning
    • What is Machine Learning?
    • Uses of Machine Learning
    • Applications of Machine Learning
    • Naive Bayes in Machine Learning
    • Dataset Labelling
    • DataSet Example
    • Deep Learning Techniques
    • Dataset ZFS
    • Careers in Machine Learning
    • What is Machine Cycle?
    • Machine Learning Feature
    • Machine Learning Programming Languages
    • What is Kernel in Machine Learning
    • Machine Learning Tools
    • Machine Learning Models
    • Machine Learning Platform
    • Machine Learning Libraries
    • Machine Learning Life Cycle
    • Machine Learning System
    • Machine Learning Datasets
    • Machine Learning Certifications
    • Machine Learning Python vs R
    • Optimization for Machine Learning
    • Types of Machine Learning
    • Machine Learning Methods
    • Machine Learning Software
    • Machine Learning Techniques
    • Machine Learning Feature Selection
    • Ensemble Methods in Machine Learning
    • Support Vector Machine in Machine Learning
    • Decision Making Techniques
    • Restricted Boltzmann Machine
    • Regularization Machine Learning
    • What is Regression?
    • What is Linear Regression?
    • Dataset for Linear Regression
    • Decision tree limitations
    • What is Decision Tree?
    • What is Random Forest
  • Supervised
    • What is Supervised Learning
    • Supervised Machine Learning
    • Supervised Machine Learning Algorithms
    • Perceptron Learning Algorithm
    • Simple Linear Regression
    • Polynomial Regression
    • Multivariate Regression
    • Regression in Machine Learning
    • Hierarchical Clustering Analysis
    • Linear Regression Analysis
    • Support Vector Regression
    • Multiple Linear Regression
    • Linear Algebra in Machine Learning
    • Statistics for Machine Learning
    • What is Regression Analysis?
    • Clustering Methods
    • Backward Elimination
    • Ensemble Techniques
    • Bagging and Boosting
    • Linear Regression Modeling
    • What is Reinforcement Learning
  • Classification
    • Kernel Methods in Machine Learning
    • Clustering in Machine Learning
    • Machine Learning Architecture
    • Automation Anywhere Architecture
    • Machine Learning C++ Library
    • Machine Learning Frameworks
    • Data Preprocessing in Machine Learning
    • Data Science Machine Learning
    • Classification of Neural Network
    • Neural Network Machine Learning
    • What is Convolutional Neural Network?
    • Single Layer Neural Network
    • Kernel Methods
    • Forward and Backward Chaining
    • Forward Chaining
    • Backward Chaining
  • Deep Learning
    • What Is Deep learning
    • Overviews Deep Learning
    • Application of Deep Learning
    • Careers in Deep Learnings
    • Deep Learning Frameworks
    • Deep Learning Model
    • Deep Learning Algorithms
    • Deep Learning Technique
    • Deep Learning Networks
    • Deep Learning Libraries
    • Deep Learning Toolbox
    • Types of Neural Networks
    • Convolutional Neural Networks
    • Create Decision Tree
    • Deep Learning for NLP
    • Caffe Deep Learning
    • Deep Learning with TensorFlow
  • RPA
    • What is RPA
    • What is Robotics?
    • Benefits of RPA
    • RPA Applications
    • Types of Robots
    • RPA Tools
    • Line Follower Robot
    • What is Blue Prism?
    • RPA vs BPM
  • Interview Questions
    • Deep Learning Interview Questions And Answer
    • Machine Learning Cheat Sheet

Related Courses

Machine Learning Training

Deep Learning Training

Artificial Intelligence Training

Unsupervised Machine Learning

By Priya PedamkarPriya Pedamkar

Unsupervised Machine Learning

Introduction to Unsupervised Machine Learning

Unsupervised Machine Learning is one of the three main techniques of machine learning. It’s a self-organized learning algorithm in which we don’t need to supervise the data by providing a labelled dataset as it can find a previously unknown pattern in the unlabelled dataset on its own to discover useful information by performing complex tasks (such as principal component analysis and cluster analysis) as compared to the other machine learning techniques like supervised learning. So let’s see how we can do that! In this topic, we are going to learn about Unsupervised Machine Learning.

All in One Data Science Bundle(360+ Courses, 50+ projects)
Python TutorialMachine LearningAWSArtificial Intelligence
TableauR ProgrammingPowerBIDeep Learning
Price
View Courses
360+ Online Courses | 50+ projects | 1500+ Hours | Verifiable Certificates | Lifetime Access
4.7 (86,060 ratings)

“Machine learning,” as the term suggests, we are teaching machines to do human-like tasks and how do humans learn, either from someone or by observation. Same as humans, the way the machine learns.

Start Your Free Data Science Course

Hadoop, Data Science, Statistics & others

Machine learning can be divided into 3 parts:

  • Supervised learning
  • Unsupervised learning
  • Reinforcement learning

Types of Machine Learning

Reinforcement learning​ is agent-based learning which involves reward and punishment upon actions taken by an agent. The end goal is to maximize the overall reward in the process of learning from the environment.

When you have input-output data, in short, labelled data, for example, given height and weight to determine whether a person is male or female, can be considered a ​Supervised learning task (from someone in the case of humans).

But in many real-life scenarios, this labelled or annotated data is not always available. As a result, many times, we face problems of segmenting objects based on their properties that are not explicitly mentioned. So how to solve this problem? Well, Unsupervised learning is the solution.

Wikipedia says ​Unsupervised learning​ is a type of self-organized Hebbian learning that helps find previously unknown data set patterns without pre-existing labels. In unsupervised learning, we don’t have any label information, but still, we want to get insights from the data based on its different properties.

Types of Unsupervised Machine Learning

Unsupervised learning tasks can be broadly divided into 3 categories:

  • Association rule mining
  • Clustering
  • Recommendation system

1. Association Rule Mining

When we have transactional data for something, it can be for products sold or any transactional data for that matters; I want to know, is there any hidden relationship between buyer and the products or product to product, such that I can somehow leverage this information to increase my sales. Extracting these relationships is the core of Association Rule Mining. We can use the ​AIS, SETM, Apriori, FP growth​ algorithms for extracting relationships.

2. Clustering

Clustering can be done with any data where we do not have the class or label information. We want to group the data such that the observations with similar properties belong to the same cluster/group, and inter-cluster distance should be maximum. At the same time, the intra-cluster distance should be minimum. We can cluster the voter’s data to determine the opinion about the government or cluster products based on their features and usage. Segment population based on income features or use clustering in sales and marketing.

We can use ​K-Means, K-Means++, K-Medoids, Fuzzy C-means (FCM)

Expectation-Maximisation (EM), Agglomerative Clustering, DBSCAN, Hierarchical Clustering types such as single linkage, complete linkage, median linkage, Ward’s method algorithms for clustering.​

3. Recommendation System

Recommendation System is basically an extension of Association rule mining in a sense; we are extracting relationships in ARM. In the Recommendation System, we are using these relationships to recommend something which is having higher acceptance chances by the end-user. Recommendation systems have gained popularity after Netflix announced a grand prize of US$1,000,000 prize in 2009.

Recommendation Systems works on transactional data, be it financial transaction, e-commerce, or grocery shop transactions. Nowadays, giant players in the e-commerce industry are luring customers by making a customized recommendations for each user based on their past purchase history and similar behaviour purchase data from other users.

Methods to develop Recommendation Systems can be broadly divided into ​Collaborative filtering and Content-Based filtering​. In ​Collaborative filtering, we have ​user-user​ ​Collaborative filtering and Item-Item Collaborative filtering, which are memory-based approaches &​ Matrix factorization ​and​ Singular Value Decomposition (SVD) ​model-based approaches​.

Applications of Unsupervised Learning

As the world’s data is increasing tremendously every day, unsupervised learning has many applications. We are always creating data by using social media platforms or some video content on YouTube, and many times we don’t even do it deliberately. All this data is unstructured, and labelling it for supervised learning tasks will be tiring and expensive.

The following are some cool applications of unsupervised machine learning:

  • Grocery shop or e-commerce store/ marketplace:​ Extract Association rules from customers transactional data and recommendations for consumers to buy products.
  • Social media platform:​ Extract relationships with different users to suggest products or services. Recommend new people for social connect.
  • Services: ​Recommendations of travel services, a recommendation of houses to rent, or matchmaking services.
  • Banking:​ Cluster customers based on their financial transactions. Cluster fraudulent transaction for fraud detection.
  • Politics:​ Cluster voter’s opinions about chances of a win for a particular party.
  • Data visualization: With clustering and ​t-distributed Stochastic Neighbor​ Embedding​ (t-SNE), we can visualize high-dimensional data. Also, this can be used for dimensionality reduction.
  • Entertainment:​ Recommendations for movies, music, as Netflix and Amazon are doing.
  • Image segmentation:​ Cluster images portions based on nearest pixel values.
  • Content:​ Personalized newspapers, recommendations of Web pages, e-learning applications, and email filters.
  • Structural discovery: With clustering, we can discover any hidden structure in the data—cluster twitter data for sentiment analysis.

Conclusion

Unsupervised machine learning is not too quantifiable but can solve many problems in which supervised algorithms fail. There are many applications to unsupervised learning in many domains where we have unstructured and unlabelled data. We can use unsupervised learning techniques to teach our machines to do a better job than us. In recent years, machines have outperformed humans in terms of tasks that are considered to be solved by humans for centuries. I hope with this article you understood what is and how unsupervised machine learning techniques can be used to solve real-world problems.

Recommended Articles

This is a guide to Unsupervised Machine Learning. Here we discuss the types of machine learning and types of unsupervised machine learning along with its applications. You may also have a look at the following articles to learn more –

  1. Machine Learning Algorithms
  2. What is Machine Learning?
  3. Introduction To Machine Learning
  4. Machine Learning Tools
Popular Course in this category
Machine Learning Training (20 Courses, 29+ Projects)
  19 Online Courses |  29 Hands-on Projects |  178+ Hours |  Verifiable Certificate of Completion
4.7
Price

View Course

Related Courses

Deep Learning Training (18 Courses, 24+ Projects)4.9
Artificial Intelligence AI Training (5 Courses, 2 Project)4.8
0 Shares
Share
Tweet
Share
Primary Sidebar
Footer
About Us
  • Blog
  • Who is EDUCBA?
  • Sign Up
  • Live Classes
  • Corporate Training
  • Certificate from Top Institutions
  • Contact Us
  • Verifiable Certificate
  • Reviews
  • Terms and Conditions
  • Privacy Policy
  •  
Apps
  • iPhone & iPad
  • Android
Resources
  • Free Courses
  • Database Management
  • Machine Learning
  • All Tutorials
Certification Courses
  • All Courses
  • Data Science Course - All in One Bundle
  • Machine Learning Course
  • Hadoop Certification Training
  • Cloud Computing Training Course
  • R Programming Course
  • AWS Training Course
  • SAS Training Course

ISO 10004:2018 & ISO 9001:2015 Certified

© 2022 - EDUCBA. ALL RIGHTS RESERVED. THE CERTIFICATION NAMES ARE THE TRADEMARKS OF THEIR RESPECTIVE OWNERS.

EDUCBA
Free Data Science Course

SPSS, Data visualization with Python, Matplotlib Library, Seaborn Package

*Please provide your correct email id. Login details for this Free course will be emailed to you

By signing up, you agree to our Terms of Use and Privacy Policy.

EDUCBA Login

Forgot Password?

By signing up, you agree to our Terms of Use and Privacy Policy.

EDUCBA
Free Data Science Course

Hadoop, Data Science, Statistics & others

*Please provide your correct email id. Login details for this Free course will be emailed to you

By signing up, you agree to our Terms of Use and Privacy Policy.

EDUCBA

*Please provide your correct email id. Login details for this Free course will be emailed to you

By signing up, you agree to our Terms of Use and Privacy Policy.

Let’s Get Started

By signing up, you agree to our Terms of Use and Privacy Policy.

This website or its third-party tools use cookies, which are necessary to its functioning and required to achieve the purposes illustrated in the cookie policy. By closing this banner, scrolling this page, clicking a link or continuing to browse otherwise, you agree to our Privacy Policy

Loading . . .
Quiz
Question:

Answer:

Quiz Result
Total QuestionsCorrect AnswersWrong AnswersPercentage

Explore 1000+ varieties of Mock tests View more