EDUCBA

EDUCBA

MENUMENU
  • Free Tutorials
  • Free Courses
  • Certification Courses
  • 360+ Courses All in One Bundle
  • Login
Home Data Science Data Science Tutorials Machine Learning Tutorial Machine Learning Models
Secondary Sidebar
Machine Learning Tutorial
  • Basic
    • Introduction To Machine Learning
    • What is Machine Learning?
    • Uses of Machine Learning
    • Applications of Machine Learning
    • Naive Bayes in Machine Learning
    • Dataset Labelling
    • DataSet Example
    • Deep Learning Techniques
    • Dataset ZFS
    • Careers in Machine Learning
    • What is Machine Cycle?
    • Machine Learning Feature
    • Machine Learning Programming Languages
    • What is Kernel in Machine Learning
    • Machine Learning Tools
    • Machine Learning Models
    • Machine Learning Platform
    • Machine Learning Libraries
    • Machine Learning Life Cycle
    • Machine Learning System
    • Machine Learning Datasets
    • Machine Learning Certifications
    • Machine Learning Python vs R
    • Optimization for Machine Learning
    • Types of Machine Learning
    • Machine Learning Methods
    • Machine Learning Software
    • Machine Learning Techniques
    • Machine Learning Feature Selection
    • Ensemble Methods in Machine Learning
    • Support Vector Machine in Machine Learning
    • Decision Making Techniques
    • Restricted Boltzmann Machine
    • Regularization Machine Learning
    • What is Regression?
    • What is Linear Regression?
    • Dataset for Linear Regression
    • Decision tree limitations
    • What is Decision Tree?
    • What is Random Forest
  • Algorithms
    • Machine Learning Algorithms
    • Apriori Algorithm in Machine Learning
    • Types of Machine Learning Algorithms
    • Bayes Theorem
    • AdaBoost Algorithm
    • Classification Algorithms
    • Clustering Algorithm
    • Gradient Boosting Algorithm
    • Mean Shift Algorithm
    • Hierarchical Clustering Algorithm
    • Hierarchical Clustering Agglomerative
    • What is a Greedy Algorithm?
    • What is Genetic Algorithm?
    • Random Forest Algorithm
    • Nearest Neighbors Algorithm
    • Weak Law of Large Numbers
    • Ray Tracing Algorithm
    • SVM Algorithm
    • Naive Bayes Algorithm
    • Neural Network Algorithms
    • Boosting Algorithm
    • XGBoost Algorithm
    • Pattern Searching
    • Loss Functions in Machine Learning
    • Decision Tree in Machine Learning
    • Hyperparameter Machine Learning
    • Unsupervised Machine Learning
    • K- Means Clustering Algorithm
    • KNN Algorithm
    • Monty Hall Problem
  • Supervised
    • What is Supervised Learning
    • Supervised Machine Learning
    • Supervised Machine Learning Algorithms
    • Perceptron Learning Algorithm
    • Simple Linear Regression
    • Polynomial Regression
    • Multivariate Regression
    • Regression in Machine Learning
    • Hierarchical Clustering Analysis
    • Linear Regression Analysis
    • Support Vector Regression
    • Multiple Linear Regression
    • Linear Algebra in Machine Learning
    • Statistics for Machine Learning
    • What is Regression Analysis?
    • Clustering Methods
    • Backward Elimination
    • Ensemble Techniques
    • Bagging and Boosting
    • Linear Regression Modeling
    • What is Reinforcement Learning
  • Classification
    • Kernel Methods in Machine Learning
    • Clustering in Machine Learning
    • Machine Learning Architecture
    • Automation Anywhere Architecture
    • Machine Learning C++ Library
    • Machine Learning Frameworks
    • Data Preprocessing in Machine Learning
    • Data Science Machine Learning
    • Classification of Neural Network
    • Neural Network Machine Learning
    • What is Convolutional Neural Network?
    • Single Layer Neural Network
    • Kernel Methods
    • Forward and Backward Chaining
    • Forward Chaining
    • Backward Chaining
  • Deep Learning
    • What Is Deep learning
    • Overviews Deep Learning
    • Application of Deep Learning
    • Careers in Deep Learnings
    • Deep Learning Frameworks
    • Deep Learning Model
    • Deep Learning Algorithms
    • Deep Learning Technique
    • Deep Learning Networks
    • Deep Learning Libraries
    • Deep Learning Toolbox
    • Types of Neural Networks
    • Convolutional Neural Networks
    • Create Decision Tree
    • Deep Learning for NLP
    • Caffe Deep Learning
    • Deep Learning with TensorFlow
  • RPA
    • What is RPA
    • What is Robotics?
    • Benefits of RPA
    • RPA Applications
    • Types of Robots
    • RPA Tools
    • Line Follower Robot
    • What is Blue Prism?
    • RPA vs BPM
  • Interview Questions
    • Deep Learning Interview Questions And Answer
    • Machine Learning Cheat Sheet

Related Courses

Machine Learning Training

Deep Learning Training

Artificial Intelligence Training

Machine Learning Models

By Priya PedamkarPriya Pedamkar

Machine Learning Models

Introduction to Machine Learning Models

A machine learning model is the output of the training process and is defined as the mathematical representation of the real-world process. The machine learning algorithms find the patterns in the training dataset, which is used to approximate the target function and is responsible for mapping the inputs to the outputs from the available dataset. These machine learning methods depend upon the type of task and are classified as Classification models, Regression models, Clustering, Dimensionality Reductions, Principal Component Analysis, etc.

Types of Machine Learning Models

Based on the type of tasks, we can classify machine learning models into the following types:

  • Classification Models
  • Regression Models
  • Clustering
  • Dimensionality Reduction
  • Deep Learning etc.

1) Classification

With respect to machine learning, classification is the task of predicting the type or class of an object within a finite number of options. The output variable for classification is always a categorical variable. For example, predicting an email is spam or not is a standard binary classification task. Now let’s note down some important models for classification problems.

  1. K-Nearest neighbors algorithm – simple but computationally exhaustive.
  2. Naive Bayes – Based on Bayes theorem.
  3. Logistic Regression – Linear model for binary classification.
  4. SVM – can be used for binary/multiclass classifications.
  5. Decision Tree – ‘If Else’ based classifier, more robust to outliers.
  6. Ensembles – Combination of multiple machine learning models clubbed together to get better results.

2) Regression

In the machine, learning regression is a set of problems where the output variable can take continuous values. For example, predicting the airline price can be considered as a standard regression task. Let’s note down some important regression models used in practice.

Start Your Free Data Science Course

Hadoop, Data Science, Statistics & others

All in One Data Science Bundle(360+ Courses, 50+ projects)
Python TutorialMachine LearningAWSArtificial Intelligence
TableauR ProgrammingPowerBIDeep Learning
Price
View Courses
360+ Online Courses | 50+ projects | 1500+ Hours | Verifiable Certificates | Lifetime Access
4.7 (86,354 ratings)
  1. Linear Regression – Simplest baseline model for regression task, works well only when data is linearly separable and very less or no multicollinearity is present.
  2. Lasso Regression – Linear regression with L2 regularization.
  3. Ridge Regression – Linear regression with L1 regularization.
  4. SVM regression
  5. Decision Tree Regression etc.

3) Clustering

In simple words, clustering is the task of grouping similar objects together. It helps to identify similar objects automatically without manual intervention. We can not build effective supervised machine learning models (models that need to be trained with manually curated or labeled data) without homogeneous data. Clustering helps us achieve this in a smarter way. Following are some of the widely used clustering models:

  1. K means – Simple but suffers from high variance.
  2. K means++ – Modified version of K means.
  3. K medoids.
  4. Agglomerative clustering – A hierarchical clustering model.
  5. DBSCAN – Density-based clustering algorithm etc.

4) Dimensionality Reduction

Dimensionality is the number of predictor variables used to predict the independent variable or target.often, in real-world datasets, the number of variables is too high. Too many variables also bring the curse of overfitting to the models. In practice, among these large numbers of variables, not all variables contribute equally towards the goal, and in a large number of cases, we can actually preserve variances with a lesser number of variables. Let’s list out some commonly used models for dimensionality reduction.

  1. PCA – It creates lesser numbers of new variables out of a large number of predictors. The new variables are independent of each other but less interpretable.
  2. TSNE – Provides lower dimensional embedding of higher-dimensional data points.
  3. SVD – Singular value decomposition is used to decompose the matrix into smaller parts to efficiently calculate.

5) Deep Learning

Deep learning is a subset of machine learning which deals with neural networks. Based on the architecture of neural networks, let’s list down important deep learning models:

  1. Multi-Layer perceptron
  2. Convolution Neural Networks
  3. Recurrent Neural Networks
  4. Boltzmann machine
  5. Autoencoders etc.

Which Model is the Best?

Above we took ideas about lots of machine learning models. Now an obvious question comes to our mind ‘Which is the best model among them?’ It depends on the problem at hand and other associated attributes like outliers, the volume of available data, quality of data, feature engineering, etc. In practice, it is always preferable to start with the simplest model applicable to the problem and increase the complexity gradually by proper parameter tuning and cross-validation. There is a proverb in the world of data science – ‘Cross-validation is more trustworthy than domain knowledge.

How to Build a Model?

Let’s see how to build a simple logistic regression model using the Scikit Learn library of python. For simplicity, we are assuming the problem is a standard classification model, and ‘train.csv’ is the train, and ‘test.csv’ is the train and test data, respectively.

Scikit Learn Library

Conclusion

This article discussed the important machine learning models used for practical purposes and how to build a simple model in python. Choosing a proper model for a particular use case is very important to obtain the proper result of a machine learning task. To compare the performance between various models, evaluation metrics or KPIs are defined for particular business problems, and the best model is chosen for production after applying the statistical performance checking.

Recommended Articles

This is a guide to Machine Learning Models. Here we discuss the basic concept with the Top 5 Types of Machine Learning Models and how to built it in detail. You can also go through our other suggested articles to learn more –

  1. Machine Learning Methods
  2. Types of Machine Learning
  3. Machine Learning Algorithms
  4. What is Machine Learning?
Popular Course in this category
Machine Learning Training (20 Courses, 29+ Projects)
  19 Online Courses |  29 Hands-on Projects |  178+ Hours |  Verifiable Certificate of Completion
4.7
Price

View Course

Related Courses

Deep Learning Training (18 Courses, 24+ Projects)4.9
Artificial Intelligence AI Training (5 Courses, 2 Project)4.8
0 Shares
Share
Tweet
Share
Primary Sidebar
Footer
About Us
  • Blog
  • Who is EDUCBA?
  • Sign Up
  • Live Classes
  • Corporate Training
  • Certificate from Top Institutions
  • Contact Us
  • Verifiable Certificate
  • Reviews
  • Terms and Conditions
  • Privacy Policy
  •  
Apps
  • iPhone & iPad
  • Android
Resources
  • Free Courses
  • Database Management
  • Machine Learning
  • All Tutorials
Certification Courses
  • All Courses
  • Data Science Course - All in One Bundle
  • Machine Learning Course
  • Hadoop Certification Training
  • Cloud Computing Training Course
  • R Programming Course
  • AWS Training Course
  • SAS Training Course

ISO 10004:2018 & ISO 9001:2015 Certified

© 2022 - EDUCBA. ALL RIGHTS RESERVED. THE CERTIFICATION NAMES ARE THE TRADEMARKS OF THEIR RESPECTIVE OWNERS.

EDUCBA
Free Data Science Course

SPSS, Data visualization with Python, Matplotlib Library, Seaborn Package

*Please provide your correct email id. Login details for this Free course will be emailed to you

By signing up, you agree to our Terms of Use and Privacy Policy.

EDUCBA Login

Forgot Password?

By signing up, you agree to our Terms of Use and Privacy Policy.

EDUCBA
Free Data Science Course

Hadoop, Data Science, Statistics & others

*Please provide your correct email id. Login details for this Free course will be emailed to you

By signing up, you agree to our Terms of Use and Privacy Policy.

EDUCBA

*Please provide your correct email id. Login details for this Free course will be emailed to you

By signing up, you agree to our Terms of Use and Privacy Policy.

Let’s Get Started

By signing up, you agree to our Terms of Use and Privacy Policy.

This website or its third-party tools use cookies, which are necessary to its functioning and required to achieve the purposes illustrated in the cookie policy. By closing this banner, scrolling this page, clicking a link or continuing to browse otherwise, you agree to our Privacy Policy

Loading . . .
Quiz
Question:

Answer:

Quiz Result
Total QuestionsCorrect AnswersWrong AnswersPercentage

Explore 1000+ varieties of Mock tests View more