EDUCBA

EDUCBA

MENUMENU
  • Free Tutorials
  • Free Courses
  • Certification Courses
  • 360+ Courses All in One Bundle
  • Login

Data Warehousing vs Data Mining

By Priya PedamkarPriya Pedamkar

Home » Data Science » Data Science Tutorials » Head to Head Differences Tutorial » Data Warehousing vs Data Mining

Data Warehousing VS Data Mining

Difference Between Data Warehousing vs Data Mining

A Data Warehouse is an environment where essential data from multiple sources is stored under a single schema. It is then used for reporting and analysis. Data Warehouse is a relational database that is designed for query and analysis rather than for transaction processing. It usually contains historical data derived from transaction data. While a Data Warehouse is built to support management functions.

Data Mining is used to extract useful information and patterns from data. The data mining can be carried with any traditional database, but since a data warehouse contains quality data, it is good to have data mining over the data warehouse system. Data Mining supports knowledge discovery by finding hidden patterns and associations, constructing analytical models, performing classification and prediction.

Start Your Free Data Science Course

Hadoop, Data Science, Statistics & others

Let us understand the Difference between Data Warehousing and Data Mining in detailed

Key Features

  1. Data Warehouse:

The key features of a Data Warehouse are discussed below:

  1. Subject Oriented: A data warehouse is subject-oriented as it provides knowledge around a subject rather than the organization’s ongoing operations. These subjects can be a product, customers, suppliers, sales, revenue, etc. A data warehouse focuses on modeling and analysis of data for decision making.
  2. Integrated: A data warehouse is constructed by combining data from heterogeneous sources such as relational databases, flat files, etc.
  3. Time-Variant: The data present in the data warehouse provides information with respect to a particular time period.
  4. Non-volatile: Non-volatile means, data once entered into the warehouse should not change.

Benefits of Data Warehouse

  1. Consistent and quality data
  2. Cost reduction
  3. More timely data access
  4. Improved performance and productivity

Data Mining:

The key features of Data mining are discussed below:

  1. Automatic discovery of patterns
  2. Prediction of likely outcomes
  3. Creation of actionable information
  4. Focus on large data sets and databases

Benefits of data mining:

  1. Direct marketing: The ability to predict who is most likely to be interested in what products
  2. Trend analysis: Understanding trends in the marketplace is a strategic advantage because it helps reduce costs and timeliness to market.
  3. Fraud detection: Data mining techniques can help discover which insurance claims, cellular phone calls or credit card purchases are likely to be fraudulent.
  4. Forecasting in financial markets: Data mining techniques are extensively used to help model financial markets.

Head to Head Comparison Between Data Warehousing vs Data Mining (Infographics)

Below is the Top 4 Comparison Between Data Warehousing and Data Mining:

Data Warehousing VS Data Mining Infographics

Key Differences Between Data Warehousing and Data Mining

Some of the major differences between Data Warehousing and Data Mining are mentioned below:

Popular Course in this category
All in One Data Science Bundle (360+ Courses, 50+ projects)360+ Online Courses | 1500+ Hours | Verifiable Certificates | Lifetime Access
4.7 (3,220 ratings)
Course Price

View Course

Related Courses
Data Scientist Training (76 Courses, 60+ Projects)Tableau Training (4 Courses, 6+ Projects)Azure Training (5 Courses, 4 Projects, 4 Quizzes)Hadoop Training Program (20 Courses, 14+ Projects, 4 Quizzes)Data Visualization Training (15 Courses, 5+ Projects)
  • Data Warehousing is the process of extracting and storing data to allow easier reporting. Whereas Data mining is the use of pattern recognition logic to identify trends within a sample data set, a typical use of data mining is to identify fraud, and to flag unusual patterns in behavior. For Example, Credit Card Company provide you an alert when you are transacting from some other geographical location which you have not used previously. This fraud detection is possible because of data mining.
  • The main difference between data warehousing and data mining is that data warehousing is the process of compiling and organizing data into one common database, whereas data mining is the process of extracting meaningful data from that database. Data mining can only be done once data warehousing is complete.
  • Data warehouse is the repository to store data. On the other hand, data mining is a broad set of activities used to uncover patterns, and give meaning to this data.
  • Data warehousing is merely extracting data from different sources, cleaning the data and storing it in the warehouse. Whereas data mining aims to examine or explore the data using queries.

For example A data warehouse of a company store all the relevant information of projects and employees. Using Data mining, one can use this data to generate different reports like profits generated etc.

  • Data warehouse is an architecture whereas, data mining is a process that is an outcome of various activities for discovering the new patterns.
  • A data warehouse is a technique of organizing data so that there should be corporate credibility and integrity, but, Data mining is helpful in extracting meaningful patterns those are not found, necessarily by only processing data or querying data in the data warehouse.
  • Data warehouse contains integrated and processed data to perform data mining at the time of planning and decision making, but data discovered by data mining results in finding patterns that are useful for future predictions.
  • Data warehouse supports basic statistical analysis. The information retrieved from data mining is helpful in tasks like Market segmentation, customer profiling, credit risk analysis, fraud detection etc.
  • Data warehousing is the process of pooling all relevant data together, whereas Data mining is the process of analyzing unknown patterns of data.
  • Data warehouses usually store many months or years of data. This is to support historical analysis. Data mining is the use of pattern recognition logic to identify trend within a sample data set.

Data Warehousing and Data Mining Comparison Table

Below are the top comparison between Data Warehousing and Data Mining.

Data Warehousing Data Mining
It is a process which is used to integrate data from multiple sources and then combine it into a single database. It is the process which is used to extract useful patterns and relationships from a huge amount of data.
It provides the organization a mechanism to store huge amount of data. Data mining techniques are applied on data warehouse in order to discover useful patterns.
This process must take place before data mining process because it compiles and organizes data into a common database. This process always takes place after data warehousing process because it requires compiled data to extract useful patterns.
This process is solely carried out by engineers. This process is carried out by business users with the help of engineers.

Conclusion

Differences between data mining and data warehousing are the system designs, a methodology used and the purpose. Data warehousing is a process that must occur before any data mining can take place. A data warehouse is the “environment” where a data mining process might take place. Lastly, it can be said that a data warehouse organizes data effectively so that the data can be mined.

Recommended Articles

This has been a guide to Data Warehousing vs Data Mining. Here we have discussed Data Warehousing vs Data Mining head to head comparison, key difference along with infographics and comparison table. You may also look at the following articles to learn more –

  1. Career in Data Warehousing
  2. Data Mining Vs Statistics – Which One Is Better
  3. Learn About Data Mining vs Text Mining
  4. Big Data vs Data Warehouse – Find Out The Best Differences
  5. Oracle Data Warehousing

All in One Data Science Bundle (360+ Courses, 50+ projects)

360+ Online Courses

1500+ Hours

Verifiable Certificates

Lifetime Access

Learn More

3 Shares
Share
Tweet
Share
Primary Sidebar
Head to Head Differences Tutorial
  • Differences Tutorial
    • Cloud Computing vs Big Data Analytics
    • PostgreSQL vs MariaDB
    • Domo vs Tableau
    • Data Scientist vs Data Engineer vs Statistician
    • Big Data Vs Machine Learning
    • Business Intelligence vs Data Warehouse
    • Apache Kafka vs Flume
    • Data Science vs Machine Learning
    • Business Analytics Vs Predictive Analytics
    • Data mining vs Web mining
    • Data Science Vs Data Mining
    • Data Science Vs Business Analytics
    • Analyst vs Associate
    • Apache Hive vs Apache Spark SQL
    • Apache Nifi vs Apache Spark
    • Apache Spark vs Apache Flink
    • Apache Storm vs Kafka
    • Artificial Intelligence vs Business Intelligence
    • Artificial Intelligence vs Human Intelligence
    • Al vs ML vs Deep Learning
    • Assembly Language vs Machine Language
    • AWS vs AZURE
    • AWS vs Azure vs Google Cloud
    • MapReduce vs Spark
    • Big Data vs Data Mining
    • Big Data vs Data Science
    • Big Data vs Data Warehouse
    • Blu-Ray vs DVD
    • Business Intelligence vs Big Data
    • Business Intelligence vs Business Analytics
    • Business Intelligence vs Data analytics
    • Business Intelligence VS Data Mining
    • Business Intelligence vs Machine Learning
    • Business Process Re-Engineering vs CI
    • Cassandra vs Elasticsearch
    • Cassandra vs Redis
    • Cloud Computing Public vs Private
    • Cloud Computing vs Fog Computing
    • Cloud Computing vs Grid Computing
    • Cloud Computing vs Hadoop
    • Computer Network vs Data Communication
    • Computer Science vs Data Science
    • Computer Scientist vs Data Scientist
    • Customer Analytics vs Web Analytics
    • Data Analyst vs Data Scientist
    • Data Analytics vs Business Analytics
    • Data Analytics vs Data Analysis
    • Data Analytics Vs Predictive Analytics
    • Data Lake vs Data Warehouse
    • Data Mining Vs Data Visualization
    • Data mining vs Machine learning
    • Data Mining Vs Statistics
    • Data Mining vs Text Mining
    • Data Science vs Artificial Intelligence
    • Data science vs Business intelligence
    • Data Science Vs Data Engineering
    • Data Science vs Data Visualization
    • Data Science vs Software Engineering
    • Data Scientist vs Big Data
    • Data Scientist vs Business Analyst
    • Data Scientist vs Data Engineer
    • Data Scientist vs Data Mining
    • Data Scientist vs Machine Learning
    • Data Scientist vs Software Engineer
    • Data visualisation vs Data analytics
    • Data vs Information
    • Data Warehouse vs Data Mart
    • Data Warehouse vs Database
    • Data Warehouse vs Hadoop
    • Data Warehousing VS Data Mining
    • DBMS vs RDBMS
    • Deep Learning vs Machine learning
    • Digital Analytics vs Digital Marketing
    • Digital Ocean vs AWS
    • DOS vs Windows
    • ETL vs ELT
    • Small Data Vs Big Data
    • Apache Hadoop vs Apache Storm
    • Hadoop vs HBase
    • Between Data Science vs Web Development
    • Hadoop vs MapReduce
    • Hadoop Vs SQL
    • Google Analytics vs Mixpanel
    • Google Analytics Vs Piwik
    • Google Cloud vs AWS
    • Hadoop vs Apache Spark
    • Hadoop vs Cassandra
    • Hadoop vs Elasticsearch
    • Hadoop vs Hive
    • Hadoop vs MongoDB
    • HADOOP vs RDBMS
    • Hadoop vs Spark
    • Hadoop vs Splunk
    • Hadoop vs SQL Performance
    • Hadoop vs Teradata
    • HBase vs HDFS
    • Hive VS HUE
    • Hive vs Impala
    • JDBC vs ODBC
    • Kafka vs Kinesis
    • Kafka vs Spark
    • Cloud Computing vs Data Analytics
    • Data Mining Vs Data Analysis
    • Data Science vs Statistics
    • Big Data Vs Predictive Analytics
    • MapReduce vs Yarn
    • Hadoop vs Redshift
    • Looker vs Tableau
    • Machine Learning vs Artificial Intelligence
    • Machine Learning vs Neural Network
    • Machine Learning vs Predictive Analytics
    • Machine Learning vs Predictive Modelling
    • Machine Learning vs Statistics
    • MariaDB vs MySQL
    • Mathematica vs Matlab
    • Matlab vs Octave
    • MATLAB vs R
    • MongoDB vs Cassandra
    • MongoDB vs DynamoDB
    • MongoDB vs HBase
    • MongoDB vs Oracle
    • MongoDB vs Postgres
    • MongoDB vs PostgreSQL
    • MongoDB vs SQL
    • MongoDB vs SQL server
    • MS SQL vs MYSQL
    • MySQL vs MongoDB
    • MySQL vs MySQLi
    • MySQL vs NoSQL
    • MySQL vs SQL Server
    • MySQL vs SQLite
    • Neural Networks vs Deep Learning
    • PIG vs MapReduce
    • Pig vs Spark
    • PL SQL vs SQL
    • Power BI Dashboard vs Report
    • Power BI vs Excel
    • Power BI vs QlikView
    • Power BI vs SSRS
    • Power BI vs Tableau
    • Power BI vs Tableau vs Qlik
    • PowerShell vs Bash
    • PowerShell vs CMD
    • PowerShell vs Command Prompt
    • PowerShell vs Python
    • Predictive Analysis vs Forecasting
    • Predictive Analytics vs Data Mining
    • Predictive Analytics vs Data Science
    • Predictive Analytics vs Descriptive Analytics
    • Predictive Analytics vs Statistics
    • Predictive Modeling vs Predictive Analytics
    • Private Cloud vs Public Cloud
    • Regression vs ANOVA
    • Regression vs Classification
    • ROLAP vs MOLAP
    • ROLAP vs MOLAP vs HOLAP
    • Spark SQL vs Presto
    • Splunk vs Elastic Search
    • Splunk vs Nagios
    • Splunk vs Spark
    • Splunk vs Tableau
    • Spring Cloud vs Spring Boot
    • Spring vs Hibernate
    • Spring vs Spring Boot
    • Spring vs Struts
    • SQL Server vs PostgreSQL
    • Sqoop vs Flume
    • Statistics vs Machine learning
    • Supervised Learning vs Deep Learning
    • Supervised Learning vs Reinforcement Learning
    • Supervised Learning vs Unsupervised Learning
    • Tableau vs Domo
    • Tableau vs Microstrategy
    • Tableau vs Power BI vs QlikView
    • Tableau vs QlikView
    • Tableau vs Spotfire
    • Talend Vs Informatica PowerCenter
    • Talend vs Mulesoft
    • Talend vs Pentaho
    • Talend vs SSIS
    • TensorFlow vs Caffe
    • Tensorflow vs Pytorch
    • TensorFlow vs Spark
    • TeraData vs Oracle
    • Text Mining vs Natural Language Processing
    • Text Mining vs Text Analytics
    • Cloud Computing vs Virtualization
    • Unit Test vs Integration Test?
    • Universal analytics vs Google Analytics
    • Visual Analytics vs Tableau
    • R vs Python
    • R vs SPSS
    • Star Schema vs Snowflake Schema
    • DDL vs DML
    • R vs R Squared
    • ActiveMQ vs Kafka
    • TDM vs FDM
    • Linear Regression vs Logistic Regression
    • Slf4j vs Log4j
    • Redis vs Kafka
    • Travis vs Jenkins
    • Fact Table vs Dimension Table
    • OLTP vs OLAP
    • Openstack vs Virtualization
    • Cluster v/s Factor analysis
    • Informatica vs Datastage
    • CCBA vs CBAP
    • SPSS vs EXCEL
    • Excel vs Tableau
    • Cassandra vs MySQL
    • RabbitMQ vs Kafka
    • SAAS vs Cloud
    • RabbitMQ vs Redis
    • AMQP vs MQTT
    • Forward Chaining vs Backward Chaining
    • Google Data Studio vs Tableau
    • ActiveMQ vs RabbitMQ
    • Cloud vs Data Center
    • Cores vs Threads
    • Inner Join vs Outer Join
    • ZeroMQ vs Kafka
    • Mxnet vs TensorFlow
    • Datadog vs Splunk
    • Redis vs Memcached
    • RDBMS vs NoSQL
    • AWS Direct Connect vs VPN
    • Cassandra vs Couchbase
    • Elegoo vs Arduino
    • Redis vs MongoDB
    • Chef vs Puppet
    • GSM vs GPRS
    • Keras vs TensorFlow vs PyTorch
    • Cloudflare vs CloudFront
    • Bitmap vs Vector
    • Left Join vs Right Join
    • IaaS vs PaaS
    • Blue Prism vs UiPath
    • GNSS vs GPS
    • Cloudflare vs Akamai
    • GCP vs AWS vs Azure
    • Arduino Mega vs Uno
    • Qualitative vs Quantitative Data
    • Arduino Micro vs Nano
    • PIC vs Arduino
    • PRTG vs Solarwinds
    • PostgreSQL vs SQLite
    • Metabase vs Tableau
    • Arduino Leonardo vs Uno
    • Arduino Due vs Mega
    • ETL Vs Database Testing
    • DBMS vs File System
    • CouchDB vs MongoDB
    • Arduino Nano vs Mini
    • IaaS vs PaaS vs SaaS
    • On-premise vs off-premise
    • Couchbase vs CouchDB
    • Tableau Dimension vs Measure
    • Cognos vs Tableau
    • Data vs Metadata
    • RethinkDB vs MongoDB

Related Courses

Online Data Science Course

Online Tableau Training

Azure Training Course

Hadoop Certification Course

Data Visualization Courses

All in One Data Science Course

Footer
About Us
  • Blog
  • Who is EDUCBA?
  • Sign Up
  • Corporate Training
  • Certificate from Top Institutions
  • Contact Us
  • Verifiable Certificate
  • Reviews
  • Terms and Conditions
  • Privacy Policy
  •  
Apps
  • iPhone & iPad
  • Android
Resources
  • Free Courses
  • Database Management
  • Machine Learning
  • All Tutorials
Certification Courses
  • All Courses
  • Data Science Course - All in One Bundle
  • Machine Learning Course
  • Hadoop Certification Training
  • Cloud Computing Training Course
  • R Programming Course
  • AWS Training Course
  • SAS Training Course

© 2020 - EDUCBA. ALL RIGHTS RESERVED. THE CERTIFICATION NAMES ARE THE TRADEMARKS OF THEIR RESPECTIVE OWNERS.

EDUCBA Login

Forgot Password?

EDUCBA
Free Data Science Course

Hadoop, Data Science, Statistics & others

*Please provide your correct email id. Login details for this Free course will be emailed to you
Book Your One Instructor : One Learner Free Class

Let’s Get Started

This website or its third-party tools use cookies, which are necessary to its functioning and required to achieve the purposes illustrated in the cookie policy. By closing this banner, scrolling this page, clicking a link or continuing to browse otherwise, you agree to our Privacy Policy

EDUCBA

*Please provide your correct email id. Login details for this Free course will be emailed to you
EDUCBA
Free Data Science Course

Hadoop, Data Science, Statistics & others

*Please provide your correct email id. Login details for this Free course will be emailed to you

Special Offer - All in One Data Science Bundle (360+ Courses, 50+ projects) Learn More