EDUCBA

EDUCBA

MENUMENU
  • Free Tutorials
  • Free Courses
  • Certification Courses
  • 360+ Courses All in One Bundle
  • Login
Home Data Science Data Science Tutorials Head to Head Differences Tutorial Apache Kafka vs Flume
Secondary Sidebar
Head to Head Differences Tutorial
  • Differences Tutorial
    • Scikit Learn vs TensorFlow
    • Azure Functions vs Logic Apps
    • Azure Data Factory vs Databricks
    • SHA1 vs MD5
    • Azure SQL Database vs Managed Instance
    • Azure SQL Database vs SQL Server
    • PostgreSQL vs MySQL
    • PostgreSQL vs MySQL Benchmark
    • ArangoDB vs MongoDB
    • Cloud Computing vs Big Data Analytics
    • T-SQL vs SQL
    • PostgreSQL vs MariaDB
    • Spark vs Impala
    • Datadog vs Splunk
    • Domo vs Tableau
    • Data Scientist vs Data Engineer vs Statistician
    • Big Data Vs Machine Learning
    • Predictive Analytics vs Business Intelligence
    • AI vs Machine Learning vs Deep Learning
    • Data Science vs Artificial Intelligence
    • Business Intelligence vs Data Warehouse
    • Apache Kafka vs Flume
    • Data Science vs Machine Learning
    • Business Analytics Vs Predictive Analytics
    • Data mining vs Web mining
    • Data Science Vs Data Mining
    • Data Science Vs Business Analytics
    • Analyst vs Associate
    • Apache Hive vs Apache Spark SQL
    • Apache Nifi vs Apache Spark
    • Apache Spark vs Apache Flink
    • Apache Storm vs Kafka
    • Artificial Intelligence vs Business Intelligence
    • Artificial Intelligence vs Human Intelligence
    • Al vs ML vs Deep Learning
    • SQL vs SQLite
    • Assembly Language vs Machine Language
    • AWS vs AZURE
    • AWS vs Azure vs Google Cloud
    • Big Data vs Data Mining
    • Big Data vs Data Science
    • Big Data vs Data Warehouse
    • Blu-Ray vs DVD
    • Business Intelligence vs Big Data
    • Business Intelligence vs Business Analytics
    • Business Intelligence vs Data analytics
    • Business Intelligence VS Data Mining
    • Business Intelligence vs Machine Learning
    • Business Process Re-Engineering vs CI
    • Cassandra vs Elasticsearch
    • Cassandra vs Redis
    • Cloud Computing Public vs Private
    • Cloud Computing vs Fog Computing
    • Cloud Computing vs Grid Computing
    • Cloud Computing vs Hadoop
    • Computer Network vs Data Communication
    • Computer Science vs Data Science
    • Computer Scientist vs Data Scientist
    • Customer Analytics vs Web Analytics
    • Data Analyst vs Data Scientist
    • Data Analytics vs Business Analytics
    • Data Analytics vs Data Analysis
    • Data Analytics Vs Predictive Analytics
    • Data Lake vs Data Warehouse
    • Data Mining Vs Data Visualization
    • Data mining vs Machine learning
    • Data Mining Vs Statistics
    • Data Mining vs Text Mining
    • Data Science vs Artificial Intelligence
    • Data science vs Business intelligence
    • Data Science Vs Data Engineering
    • Data Science vs Data Visualization
    • Data Science vs Software Engineering
    • Data Scientist vs Big Data
    • Data Scientist vs Business Analyst
    • Data Scientist vs Data Engineer
    • Data Scientist vs Data Mining
    • Data Scientist vs Machine Learning
    • Data Scientist vs Software Engineer
    • Data visualisation vs Data analytics
    • Data vs Information
    • Data Warehouse vs Data Mart
    • Data Warehouse vs Database
    • Data Warehouse vs Hadoop
    • Data Warehousing VS Data Mining
    • DBMS vs RDBMS
    • Deep Learning vs Machine learning
    • Digital Analytics vs Digital Marketing
    • Digital Ocean vs AWS
    • DOS vs Windows
    • ETL vs ELT
    • Small Data Vs Big Data
    • Apache Hadoop vs Apache Storm
    • Hadoop vs HBase
    • Between Data Science vs Web Development
    • Hadoop vs MapReduce
    • Hadoop Vs SQL
    • Google Analytics vs Mixpanel
    • Google Analytics Vs Piwik
    • Google Cloud vs AWS
    • Hadoop vs Apache Spark
    • Hadoop vs Cassandra
    • Hadoop vs Elasticsearch
    • Hadoop vs Hive
    • Hadoop vs MongoDB
    • HADOOP vs RDBMS
    • Hadoop vs Spark
    • Hadoop vs Splunk
    • Hadoop vs SQL Performance
    • Hadoop vs Teradata
    • HBase vs HDFS
    • Hive VS HUE
    • Hive vs Impala
    • JDBC vs ODBC
    • Kafka vs Kinesis
    • Kafka vs Spark
    • Cloud Computing vs Data Analytics
    • Data Mining Vs Data Analysis
    • Data Science vs Statistics
    • Big Data Vs Predictive Analytics
    • MapReduce vs Yarn
    • Hadoop vs Redshift
    • Looker vs Tableau
    • Machine Learning vs Artificial Intelligence
    • Machine Learning vs Neural Network
    • Machine Learning vs Predictive Analytics
    • Machine Learning vs Predictive Modelling
    • Machine Learning vs Statistics
    • MariaDB vs MySQL
    • Mathematica vs Matlab
    • Matlab vs Octave
    • MATLAB vs R
    • MongoDB vs Cassandra
    • MongoDB vs DynamoDB
    • MongoDB vs HBase
    • MongoDB vs Oracle
    • MongoDB vs Postgres
    • MongoDB vs PostgreSQL
    • MongoDB vs SQL
    • MongoDB vs SQL server
    • MS SQL vs MYSQL
    • MySQL vs MongoDB
    • MySQL vs MySQLi
    • MySQL vs NoSQL
    • MySQL vs SQL Server
    • MySQL vs SQLite
    • Neural Networks vs Deep Learning
    • PIG vs MapReduce
    • Pig vs Spark
    • PL SQL vs SQL
    • Power BI Dashboard vs Report
    • Power BI vs Excel
    • Power BI vs QlikView
    • Power BI vs SSRS
    • Power BI vs Tableau
    • Power BI vs Tableau vs Qlik
    • PowerShell vs Bash
    • PowerShell vs CMD
    • PowerShell vs Command Prompt
    • PowerShell vs Python
    • Predictive Analysis vs Forecasting
    • Predictive Analytics vs Data Mining
    • Predictive Analytics vs Data Science
    • Predictive Analytics vs Descriptive Analytics
    • Predictive Analytics vs Statistics
    • Predictive Modeling vs Predictive Analytics
    • Private Cloud vs Public Cloud
    • Regression vs ANOVA
    • Regression vs Classification
    • ROLAP vs MOLAP
    • ROLAP vs MOLAP vs HOLAP
    • Spark SQL vs Presto
    • Splunk vs Elastic Search
    • Splunk vs Nagios
    • Splunk vs Spark
    • Splunk vs Tableau
    • Spring Cloud vs Spring Boot
    • Spring vs Hibernate
    • Spring vs Spring Boot
    • Spring vs Struts
    • SQL Server vs PostgreSQL
    • Sqoop vs Flume
    • Statistics vs Machine learning
    • Supervised Learning vs Deep Learning
    • Supervised Learning vs Reinforcement Learning
    • Supervised Learning vs Unsupervised Learning
    • Tableau vs Domo
    • Tableau vs Microstrategy
    • Tableau vs Power BI vs QlikView
    • Tableau vs QlikView
    • Tableau vs Spotfire
    • Talend Vs Informatica PowerCenter
    • Talend vs Mulesoft
    • Talend vs Pentaho
    • Talend vs SSIS
    • TensorFlow vs Caffe
    • Tensorflow vs Pytorch
    • TensorFlow vs Spark
    • TeraData vs Oracle
    • Text Mining vs Natural Language Processing
    • Text Mining vs Text Analytics
    • Cloud Computing vs Virtualization
    • Unit Test vs Integration Test?
    • Universal analytics vs Google Analytics
    • Visual Analytics vs Tableau
    • R vs Python
    • R vs SPSS
    • Star Schema vs Snowflake Schema
    • DDL vs DML
    • R vs R Squared
    • ActiveMQ vs Kafka
    • TDM vs FDM
    • Linear Regression vs Logistic Regression
    • Slf4j vs Log4j
    • Redis vs Kafka
    • Travis vs Jenkins
    • Fact Table vs Dimension Table
    • OLTP vs OLAP
    • Openstack vs Virtualization
    • Cluster v/s Factor analysis
    • Informatica vs Datastage
    • CCBA vs CBAP
    • SPSS vs EXCEL
    • Excel vs Tableau
    • Cassandra vs MySQL
    • RabbitMQ vs Kafka
    • SAAS vs Cloud
    • RabbitMQ vs Redis
    • AMQP vs MQTT
    • Forward Chaining vs Backward Chaining
    • Google Data Studio vs Tableau
    • ActiveMQ vs RabbitMQ
    • Cloud vs Data Center
    • Cores vs Threads
    • Inner Join vs Outer Join
    • ZeroMQ vs Kafka
    • Mxnet vs TensorFlow
    • Redis vs Memcached
    • RDBMS vs NoSQL
    • AWS Direct Connect vs VPN
    • Cassandra vs Couchbase
    • Elegoo vs Arduino
    • Redis vs MongoDB
    • Chef vs Puppet
    • GSM vs GPRS
    • Keras vs TensorFlow vs PyTorch
    • Cloudflare vs CloudFront
    • Bitmap vs Vector
    • Left Join vs Right Join
    • IaaS vs PaaS
    • Blue Prism vs UiPath
    • GNSS vs GPS
    • Cloudflare vs Akamai
    • GCP vs AWS vs Azure
    • Arduino Mega vs Uno
    • Qualitative vs Quantitative Data
    • Arduino Micro vs Nano
    • PIC vs Arduino
    • PRTG vs Solarwinds
    • PostgreSQL vs SQLite
    • Metabase vs Tableau
    • Arduino Leonardo vs Uno
    • Arduino Due vs Mega
    • ETL Vs Database Testing
    • DBMS vs File System
    • CouchDB vs MongoDB
    • Arduino Nano vs Mini
    • IaaS vs PaaS vs SaaS
    • On-premise vs off-premise
    • Couchbase vs CouchDB
    • Tableau Dimension vs Measure
    • Cognos vs Tableau
    • Data vs Metadata
    • RethinkDB vs MongoDB
    • Cloudera vs Snowflake
    • HBase vs Cassandra
    • Business Analytics vs Business Intelligence
    • R Programming vs Python
    • MongoDB vs Hadoop
    • MySQL vs Oracle
    • OData vs GraphQL
    • Soft Computing vs Hard Computing
    • Binary Tree vs Binary Search Tree
    • Datadog vs CloudWatch
    • B tree vs Binary tree
    • Cloudera vs Hortonworks
    • DevSecOps vs DevOps
    • PostgreSQL Varchar vs Text
    • PostgreSQL Database vs schema
    • MapReduce vs spark
    • Hypervisor vs Docker
    • SciLab vs Octave
    • DocumentDB vs DynamoDB
    • PostgreSQL union vs union all
    • OrientDB vs Neo4j
    • Data visualization vs Business Intelligence
    • QlikView vs Qlik Sense
    • Neo4j vs MongoDB
    • Postgres Schema vs Database
    • Mxnet vs Pytorch
    • Naive Bayes vs Logistic Regression
    • Random Forest vs Decision Tree
    • Random Forest vs XGBoost
    • DynamoDB vs Cassandra
    • Looker vs Power BI
    • PostgreSQL vs RedShift
    • Presto vs Hive
    • Random forest vs Gradient boosting
    • Gradient boosting vs AdaBoost
    • Amazon rds vs Redshift
    • Bigquery vs Bigtable
    • Data Architect vs Data Engineer
    • DataSet vs DataTable
    • dataset vs dataframe
    • Dataset vs Database
    • New Relic vs Splunk
    • Data Architect and Management Designer
    • Data Engineer vs Data Analyst
    • Grafana vs Tableau
    • MySQL text vs Varchar
    • Relational Database vs Flat File
    • Datadog vs Prometheus
    • Neo4j vs Neptune
    • Data Mining vs Data warehousing
    • DocumentDB vs MongoDB
    • PostScript vs PCL
    • QRadar vs Splunk
    • Qlik Sense vs Tableau
    • DigitalOcean vs Google Cloud
    • PostgreSQL vs Elasticsearch
    • Redshift vs blueshift
    • Gitlab vs Azure DevOps

Apache Kafka vs Flume

By Priya PedamkarPriya Pedamkar

Apache Kafka vs Flume

Difference Between Apache Kafka and Flume

Apache Kafka is an open source system for processing ingests data in real-time. Kafka is the durable, scalable and fault-tolerant public-subscribe messaging system. The publish-subscribe architecture was initially developed by LinkedIn to overcome the limitations in batch processing of large data and to resolve issues on data loss. The architecture in Kafka will disassociate the information provider from the consumer of information. Hence, the sending application and the receiving application will not know anything about each other for that data sent and received.

Apache Kafka will process incoming data streams irrespective of their source and its destination. It is a distributed streaming platform with capabilities similar to an enterprise messaging system but has unique capabilities with high levels of sophistication.  With Kafka, users can publish and subscribe to information as and when they occur. It allows users to store data streams in a fault-tolerant manner. Irrespective of the application or use case, Kafka easily factors massive data streams for analysis in enterprise Apache Hadoop. Kafka also can render streaming data through a combination of Apache HBase, Apache Storm, and Apache Spark systems and can be used in a variety of application domains.

Start Your Free Data Science Course

Hadoop, Data Science, Statistics & others

In simplistic terms, Kafka’s publish-subscribe system is made up of publishers, Kafka cluster, and consumers/subscribers. Data published by the publisher are stored as logs. Subscribers can also act as publishers and vice-versa. A subscriber requests for a subscription and Kafka forwards the data to the requested subscriber. Typically, there can be numerous publishers and subscribers on different topics on a Kafka cluster. Likewise, an application can act as both, a publisher and subscriber. A message published for a topic can have multiple interested subscribers; the system processes data for every interested subscriber. Some of the use cases where Kafka is widely used are:

  • Track activities on a website
  • Stream processing
  • Collecting and monitoring metrics
  • Log Aggregation

Apache Flume is a tool which is used to collect, aggregate and transfer data streams from different sources to a centralized data store such as HDFS (Hadoop Distributed File System). Flume is highly reliable, configurable and manageable distributed data collection service which is designed to gather streaming data from different web servers to HDFS. It is also an open source data collection service.

Apache Flume is based on streaming data flows and has a flexible architecture. Flume offers highly fault-tolerant, robust and reliable mechanism for fail-over and recovery with the capability to collect data in both batch and in stream modes. Flume’s capabilities are leveraged by enterprises to manage high volume streams of data to land in HDFS. For instance, data streams include application logs, sensors and machine data and social media, and so on.  These data, when landed in Hadoop, can be analyzed by running interactive queries in Apache Hive or serve as real-time data for business dashboards in Apache HBase. Some of the features include,

  • Gather data from multiple sources, and efficiently ingest into HDFS
  • A variety of source and destination types are supported
  • Flume can be easily customized, reliable, scalable and fault-tolerant
  • Can store data in any centralized store (eg., HDFS, HBase)

Head to Head Comparison Between Apache Kafka and Flume (Infographics)

Below is the Top 5 Comparision Between Apache Kafka and Flume:

Apache Kafka vs Flume Infographics

Key Differences Between Apache Kafka and Flume

The differences between Apache Kafka and Flume are explored here,

  • Both, Apache Kafka and Flume systems provide reliable, scalable and high-performance for handling large volumes of data with ease. However, Kafka is a more general purpose system where multiple publishers and subscribers can share multiple topics. Contrarily, Flume is a special purpose tool for sending data into HDFS.
  • Kafka can support data streams for multiple applications, whereas Flume is specific for Hadoop and big data analysis.
  • Kafka can process and monitor data in distributed systems whereas Flume gathers data from distributed systems to land data on a centralized data store.
  • When configured correctly, both Apache Kafka and Flume are highly reliable with zero data loss guarantees. Kafka replicates data in the cluster, whereas Flume does not replicate events. Hence, when a Flume agent crashes, access to those events in the channel is lost till the disk is recovered, on the other hand, Kafka makes data available even in case of single point failure.
  • Kafka supports large sets of publishers and subscribers and multiple applications. On the other hand, Flume supports a large set of source and destination types to land data on Hadoop.

Apache Kafka vs Flume Comparison Table

The comparison table between Apache Kafka and Flum is mentioned below.

Basis for Comparison Apache Kafka Flume
Meaning
  • Kafka runs as a cluster and handles incoming high volume data streams in real time
  • Kafka has three main components, the publisher, Kafka cluster/ manager, and subscriber.
  • Kafka stores a stream of records into different categories or topics.
  • Each record in Kafka will be stored as a log entry where the receiver (subscriber) or sender (publisher) will not be aware of each other.
  • Flume is a tool to collect log data from distributed web servers. The data collected will land into HDFS for further analysis
  • Flume is a highly reliable and configurable tool.
  • Flume is highly efficient and robust in processing log files, both in batch and real-time processing.

 

 

Concept
  • Kafka will treat each topic partition as an ordered set of messages
  • Based on publish-subscribe architecture and does not track messages read by subscribers and who is the publisher.
  • Kafka retains all messages or data as logs where subscribers are responsible to track the location in each log.
  • Kafka can support a large number of publishers and subscribers and store large amounts of data
  • Flume can take in streaming data from multiple sources for storage and analysis for use in HBase or Hadoop.
  • Ensures guaranteed data delivery because both the receiver and sender agents evoke the transaction to ensure guaranteed semantics
  • It can scale horizontally
Basis of Formation
  • An efficient, fault-tolerant and scalable messaging system
  • Flume is a service or tool for gathering data into Hadoop
Application Areas
  • Monitor data from distributed applications
  • Make data available to multiple subscribers based on their interests
  • Log aggregation services
  • Process transaction logs in application servers, web servers, etc. For example, e-commerce, online retail portals, social media, etc.
Approach
  • Kafka is required to efficiently process real-time data streams without data loss
  • Need to ensure data delivery even during machine failures, hence it is the fault-tolerant system
  • Need to gather big data either in streaming or in batch mode from different sources
  • Efficient when working with logs

Conclusion

In summary, Apache Kafka vs Flume offer reliable, distributed and fault-tolerant systems for aggregating and collecting large volumes of data from multiple streams and big data applications. Both Apache Kafka and Flume systems can be scaled and configured to suit different computing needs.  Kafka’s architecture provides fault-tolerance, but Flume can be tuned to ensure fail-safe operations.  Users planning to implement these systems must first understand the use case and implement appropriately to ensure high performance and realize full benefits.

Recommended Articles

This has been a guide to Apache Kafka vs Flume. Here we have discussed Apache Kafka vs Flume head to head comparison, key difference along with infographics and comparison table. You may also look at the following articles to learn more –

  1. Apache Storm vs Kafka – 9 Best Differences You Must Know
  2. SASS Interview Questions: What are the helpful questions
  3. Kafka vs Kinesis | Top 5 Differences to Learn with Infographics
Popular Course in this category
Hadoop Training Program (20 Courses, 14+ Projects, 4 Quizzes)
  20 Online Courses |  14 Hands-on Projects |  135+ Hours |  Verifiable Certificate of Completion
4.5
Price

View Course

Related Courses

Data Scientist Training (85 Courses, 67+ Projects)4.9
Tableau Training (8 Courses, 8+ Projects)4.8
Azure Training (6 Courses, 5 Projects, 4 Quizzes)4.7
Data Visualization Training (15 Courses, 5+ Projects)4.7
All in One Data Science Bundle (360+ Courses, 50+ projects)4.7
Primary Sidebar
Footer
About Us
  • Blog
  • Who is EDUCBA?
  • Sign Up
  • Live Classes
  • Corporate Training
  • Certificate from Top Institutions
  • Contact Us
  • Verifiable Certificate
  • Reviews
  • Terms and Conditions
  • Privacy Policy
  •  
Apps
  • iPhone & iPad
  • Android
Resources
  • Free Courses
  • Database Management
  • Machine Learning
  • All Tutorials
Certification Courses
  • All Courses
  • Data Science Course - All in One Bundle
  • Machine Learning Course
  • Hadoop Certification Training
  • Cloud Computing Training Course
  • R Programming Course
  • AWS Training Course
  • SAS Training Course

ISO 10004:2018 & ISO 9001:2015 Certified

© 2023 - EDUCBA. ALL RIGHTS RESERVED. THE CERTIFICATION NAMES ARE THE TRADEMARKS OF THEIR RESPECTIVE OWNERS.

EDUCBA

*Please provide your correct email id. Login details for this Free course will be emailed to you

Let’s Get Started

By signing up, you agree to our Terms of Use and Privacy Policy.

EDUCBA

*Please provide your correct email id. Login details for this Free course will be emailed to you
EDUCBA

*Please provide your correct email id. Login details for this Free course will be emailed to you
EDUCBA Login

Forgot Password?

By signing up, you agree to our Terms of Use and Privacy Policy.

This website or its third-party tools use cookies, which are necessary to its functioning and required to achieve the purposes illustrated in the cookie policy. By closing this banner, scrolling this page, clicking a link or continuing to browse otherwise, you agree to our Privacy Policy

Loading . . .
Quiz
Question:

Answer:

Quiz Result
Total QuestionsCorrect AnswersWrong AnswersPercentage

Explore 1000+ varieties of Mock tests View more