EDUCBA

EDUCBA

MENUMENU
  • Free Tutorials
  • Free Courses
  • Certification Courses
  • 360+ Courses All in One Bundle
  • Login

Multivariate Regression

By Priya PedamkarPriya Pedamkar

Home » Data Science » Data Science Tutorials » Machine Learning Tutorial » Multivariate Regression

Multivariate Regression

Introduction to Multivariate Regression

Multivariate Regression is a type of machine learning algorithm that involves multiple data variables for analysis. It is mostly considered as a supervised machine learning algorithm. Steps involved for Multivariate regression analysis are feature selection and feature engineering, normalizing the features, selecting the loss function and hypothesis parameters, optimize the loss function, Test the hypothesis and generate the regression model. The major advantage of multivariate regression is to identify the relationships among the variables associated with the data set. It helps to find the correlation between the dependent and multiple independent variables. Multivariate linear regression is a commonly used machine learning algorithm.

Why single Regression model will not work?

  • As known that regression analysis is mainly used to exploring the relationship between a dependent and independent variable.
  • In the real world, there are many situations where many independent variables are influential by other variables for that we have to move to different options than a single regression model that can only take one independent variable.

What is Multivariate Regression?

  • Multivariate Regression helps use to measure the angle of more than one independent variable and more than one dependent variable. It finds the relation between the variables (Linearly related).
  • It used to predict the behavior of the outcome variable and the association of predictor variables and how the predictor variables are changing.
  • It can be applied to many practical fields like politics, economics, medical, research works and many different kinds of businesses.
  • Multivariate regression is a simple extension of multiple regression.
  • Multiple regression is used to predicting and exchange the values of one variable based on the collective value of more than one value of predictor variables.
  • First, we will take an example to understand the use of multivariate regression after that we will look for the solution to that issue.

Examples of Multivariate Regression

  • If E-commerce Company has collected the data of its customers such as Age, purchased history of a customer, gender and company want to find the relationship between these different dependents and independent variables.
  • A gym trainer has collected the data of his client that are coming to his gym and want to observe some things of client that are health, eating habits (which kind of product client is consuming every week), the weight of the client. This wants to find a relation between these variables.

As you have seen in the above two examples that in both of the situations there is more than one variable some are dependent and some are independent, so single regression is not enough to analyze this kind of data.

Start Your Free Data Science Course

Hadoop, Data Science, Statistics & others

Here is the multivariate regression that comes into the picture.

1. Feature selection

The selection of features plays the most important role in multivariate regression.

Finding the feature that is needed for finding which variable is dependent on this feature.

2. Normalizing Features

For better analysis features are need to be scaled to get them into a specific range. We can also change the value of each feature.

Popular Course in this category
Sale
Statistical Analysis Training (15 Courses, 10+ Projects)15 Online Courses | 10 Hands-on Projects | 140+ Hours | Verifiable Certificate of Completion | Lifetime Access
4.5 (9,403 ratings)
Course Price

View Course

Related Courses
Machine Learning Training (19 Courses, 29+ Projects)Deep Learning Training (16 Courses, 24+ Projects)Artificial Intelligence Training (5 Courses, 2 Project)

3. Select Loss function and Hypothesis

The loss function calculates the loss when the hypothesis predicts the wrong value.

And hypothesis means predicted value from the feature variable.

4. Set Hypothesis Parameters

Set the hypothesis parameter that can reduce the loss function and can predict.

5. Minimize the Loss Function

Minimizing the loss by using some lose minimization algorithm and use it over the dataset which can help to adjust the hypothesis parameters. Once the loss is minimized then it can be used for prediction.

There are many algorithms that can be used for reducing the loss such as gradient descent.

6. Test the hypothesis function

Check the hypothesis function how correct it predicting values, test it on test data.

Steps to follow archive Multivariate Regression

1) Import the necessary common libraries such as numpy, pandas

2) Read the dataset using the pandas’ library

3) As we have discussed above that we have to normalize the data for getting better results. Why normalization because every feature has a different range of values.

4) Create a model that can archive regression if you are using linear regression use equation

Y = mx + c

In which x is given input, m is a slop line, c is constant, y is the output variable.

5) Train the model using hyperparameter. Understand the hyperparameter set it according to the model. Such as learning rate, epochs, iterations.

6) As discussed above how the hypothesis plays an important role in analysis, checks the hypothesis and measure the loss/cost function.

7) The loss/ Cost function will help us to measure how hypothesis value is true and accurate.

8) Minimize the loss/cost function will help the model to improve prediction.

9) The loss equation can be defined as a sum of the squared difference between the predicted value and actual value divided by twice the size of the dataset.

10) To minimize the Lose/cost function use gradient descent, it starts with a random value and finds the point their loss function is least.

By following the above we can implement Multivariate regression

Advantages of Multivariate Regression

  • The multivariate technique allows finding a relationship between variables or features
  • It helps to find a correlation between independent and dependent variables.

Disadvantages of Multivariate Regression

  • Multivariate techniques are a little complex and high-level mathematical calculation
  • The multivariate regression model’s output is not easily interpretable and sometimes because some loss and error output are not identical.
  • It cannot be applied to a small dataset because results are more straightforward in larger datasets.

Conclusion- Multivariate Regression

  • The main purpose to use multivariate regression is when you have more than one variables are available and in that case, single linear regression will not work.
  • Mainly real world has multiple variables or features when multiple variables/features come into play multivariate regression are used.

Recommended Articles

This is a guide to the Multivariate Regression. Here we discuss the Introduction, Examples of Multivariate Regression along with the Advantages and Dis Advantages. You can also go through our other suggested articles to learn more –

  1. Regression Formula
  2. Data Science Course in London
  3. SAS Operators
  4. Data Science Techniques
  5. Variables in JavaScript
  6. Top Differences of Regression vs Classification
  7. What is Regression and Types?

Statistical Analysis Training (10 Courses, 5+ Projects)

15 Online Courses

10 Hands-on Projects

140+ Hours

Verifiable Certificate of Completion

Lifetime Access

Learn More

2 Shares
Share
Tweet
Share
Primary Sidebar
Machine Learning Tutorial
  • Supervised
    • What is Supervised Learning
    • Supervised Machine Learning
    • Supervised Machine Learning Algorithms
    • Perceptron Learning Algorithm
    • Simple Linear Regression
    • Polynomial Regression
    • Multivariate Regression
    • Regression in Machine Learning
    • Hierarchical Clustering Analysis
    • Linear Regression Analysis
    • Support Vector Regression
    • Multiple Linear Regression
    • Linear Algebra in Machine Learning
    • Statistics for Machine Learning
    • What is Regression Analysis?
    • Clustering Methods
    • Backward Elimination
    • Ensemble Techniques
    • Bagging and Boosting
    • Linear Regression Modeling
    • What is Reinforcement Learning
  • Basic
    • Introduction To Machine Learning
    • What is Machine Learning?
    • Uses of Machine Learning
    • Applications of Machine Learning
    • Naive Bayes in Machine Learning
    • Dataset Labelling
    • DataSet Example
    • Dataset ZFS
    • Careers in Machine Learning
    • What is Machine Cycle?
    • Machine Learning Feature
    • Machine Learning Programming Languages
    • What is Kernel in Machine Learning
    • Machine Learning Tools
    • Machine Learning Models
    • Machine Learning Platform
    • Machine Learning Libraries
    • Machine Learning Life Cycle
    • Machine Learning System
    • Machine Learning Datasets
    • Top 7 Useful Benefits Of Machine Learning Certifications
    • Machine Learning Python vs R
    • Optimization for Machine Learning
    • Types of Machine Learning
    • Machine Learning Methods
    • Machine Learning Software
    • Machine Learning Techniques
    • Machine Learning Feature Selection
    • Ensemble Methods in Machine Learning
    • Support Vector Machine in Machine Learning
    • Decision Making Techniques
    • Restricted Boltzmann Machine
    • Regularization Machine Learning
    • What is Regression?
    • What is Linear Regression?
    • Dataset for Linear Regression
    • Decision tree limitations
    • What is Decision Tree?
    • What is Random Forest
  • Algorithms
    • Machine Learning Algorithms
    • Apriori Algorithm in Machine Learning
    • Types of Machine Learning Algorithms
    • Bayes Theorem
    • AdaBoost Algorithm
    • Classification Algorithms
    • Clustering Algorithm
    • Gradient Boosting Algorithm
    • Mean Shift Algorithm
    • Hierarchical Clustering Algorithm
    • Hierarchical Clustering Agglomerative
    • What is a Greedy Algorithm?
    • What is Genetic Algorithm?
    • Random Forest Algorithm
    • Nearest Neighbors Algorithm
    • Weak Law of Large Numbers
    • Ray Tracing Algorithm
    • SVM Algorithm
    • Naive Bayes Algorithm
    • Neural Network Algorithms
    • Boosting Algorithm
    • XGBoost Algorithm
    • Pattern Searching
    • Loss Functions in Machine Learning
    • Decision Tree in Machine Learning
    • Hyperparameter Machine Learning
    • Unsupervised Machine Learning
    • K- Means Clustering Algorithm
    • KNN Algorithm
    • Monty Hall Problem
  • Classification
    • Kernel Methods in Machine Learning
    • Clustering in Machine Learning
    • Machine Learning Architecture
    • Automation Anywhere Architecture
    • Machine Learning C++ Library
    • Machine Learning Frameworks
    • Data Preprocessing in Machine Learning
    • Data Science Machine Learning
    • Classification of Neural Network
    • Neural Network Machine Learning
    • What is Convolutional Neural Network?
    • Single Layer Neural Network
    • Kernel Methods
    • Forward and Backward Chaining
    • Forward Chaining
    • Backward Chaining
  • Deep Learning
    • What Is Deep learning
    • Overviews Deep Learning
    • Application of Deep Learning
    • Careers in Deep Learnings
    • Deep Learning Frameworks
    • Deep Learning Model
    • Deep Learning Algorithms
    • Deep Learning Technique
    • Deep Learning Networks
    • Deep Learning Libraries
    • Deep Learning Toolbox
    • Types of Neural Networks
    • Convolutional Neural Networks
    • Create Decision Tree
    • Deep Learning for NLP
    • Caffe Deep Learning
    • Deep Learning with TensorFlow
  • RPA
    • What is RPA
    • What is Robotics?
    • Benefits of RPA
    • RPA Applications
    • Types of Robots
    • RPA Tools
    • Line Follower Robot
    • What is Blue Prism?
    • RPA vs BPM
  • PyTorch
    • PyTorch Tensors
    • What is PyTorch?
    • PyTorch MSELoss()
    • PyTorch NLLLOSS
    • PyTorch MaxPool2d
    • PyTorch Pretrained Models
    • PyTorch Squeeze
    • PyTorch Reinforcement Learning
    • PyTorch zero_grad
    • PyTorch norm
    • PyTorch VAE
    • PyTorch Early Stopping
    • PyTorch requires_grad
    • PyTorch MNIST
    • PyTorch Conv2d
    • Dataset Pytorch
    • PyTorch tanh
    • PyTorch bmm
    • PyTorch profiler
    • PyTorch unsqueeze
    • PyTorch adam
    • PyTorch backward
    • PyTorch concatenate
    • PyTorch Embedding
    • PyTorch Tensor to NumPy
    • PyTorch Normalize
    • PyTorch ReLU
    • PyTorch Autograd
    • PyTorch Transpose
    • PyTorch Object Detection
    • PyTorch Autoencoder
    • PyTorch Loss
    • PyTorch repeat
    • PyTorch gather
    • PyTorch sequential
    • PyTorch U-NET
    • PyTorch Sigmoid
    • PyTorch Neural Network
    • PyTorch Quantization
    • PyTorch Ignite
    • PyTorch Versions
    • PyTorch TensorBoard
    • PyTorch Dropout
    • PyTorch Model
    • PyTorch optimizer
    • PyTorch ResNet
    • PyTorch CNN
    • PyTorch Detach
    • Single Layer Perceptron
    • PyTorch vs Keras
    • torch.nn Module
  • UiPath
    • What is UiPath
    • UiPath Action Center
    • UiPath?Orchestrator
    • UiPath web automation
    • UiPath Orchestrator API
    • UiPath Delay
    • UiPath Careers
    • UiPath Architecture
    • UiPath version
    • Uipath Reframework
    • UiPath Studio
  • Interview Questions
    • Deep Learning Interview Questions And Answer
    • Machine Learning Cheat Sheet

Related Courses

Machine Learning Training

Deep Learning Training

Artificial Intelligence Training

Footer
About Us
  • Blog
  • Who is EDUCBA?
  • Sign Up
  • Live Classes
  • Corporate Training
  • Certificate from Top Institutions
  • Contact Us
  • Verifiable Certificate
  • Reviews
  • Terms and Conditions
  • Privacy Policy
  •  
Apps
  • iPhone & iPad
  • Android
Resources
  • Free Courses
  • Database Management
  • Machine Learning
  • All Tutorials
Certification Courses
  • All Courses
  • Data Science Course - All in One Bundle
  • Machine Learning Course
  • Hadoop Certification Training
  • Cloud Computing Training Course
  • R Programming Course
  • AWS Training Course
  • SAS Training Course

© 2022 - EDUCBA. ALL RIGHTS RESERVED. THE CERTIFICATION NAMES ARE THE TRADEMARKS OF THEIR RESPECTIVE OWNERS.

EDUCBA
Free Data Science Course

Hadoop, Data Science, Statistics & others

*Please provide your correct email id. Login details for this Free course will be emailed to you

By signing up, you agree to our Terms of Use and Privacy Policy.

EDUCBA
Free Data Science Course

Hadoop, Data Science, Statistics & others

*Please provide your correct email id. Login details for this Free course will be emailed to you

By signing up, you agree to our Terms of Use and Privacy Policy.

Let’s Get Started

By signing up, you agree to our Terms of Use and Privacy Policy.

Loading . . .
Quiz
Question:

Answer:

Quiz Result
Total QuestionsCorrect AnswersWrong AnswersPercentage

Explore 1000+ varieties of Mock tests View more

EDUCBA Login

Forgot Password?

By signing up, you agree to our Terms of Use and Privacy Policy.

This website or its third-party tools use cookies, which are necessary to its functioning and required to achieve the purposes illustrated in the cookie policy. By closing this banner, scrolling this page, clicking a link or continuing to browse otherwise, you agree to our Privacy Policy

EDUCBA

*Please provide your correct email id. Login details for this Free course will be emailed to you

By signing up, you agree to our Terms of Use and Privacy Policy.

4th of July Offer - Statistical Analysis Training (10 Courses, 5+ Projects) Learn More