EDUCBA

EDUCBA

MENUMENU
  • Free Tutorials
  • Free Courses
  • Certification Courses
  • 360+ Courses All in One Bundle
  • Login
Home Data Science Data Science Tutorials R Programming Tutorial KNN Algorithm in R
Secondary Sidebar
R programming Tutorial
  • Advanced
    • Statistical Analysis with R
    • R String Functions
    • Data Exploration in R
    • R CSV Files
    • KNN Algorithm in R
    • Sorting in R
    • lm Function in R
    • Hierarchical Clustering in R
    • R Normal Distribution
    • Binomial Distribution in R
    • Decision Tree in R
    • GLM in R
    • Arima Model in R
    • Linear Model in R
    • Predict Function in R
    • Survival Analysis in R
    • Standard Deviation in R
    • Statistical Analysis in R
    • Predictive Analysis?in R
    • T-test in R
    • Database in R
  • Basic
    • What is R Programming Language
    • Careers in R Programming
    • Install R
    • List of R Packages
    • Introduction of R Tools Technology
    • R Programming Language
    • DataSet in R
    • What is RStudio?
    • R-studio-Functions
    • R Packages
    • Time series?in R
    • R Data Types
    • R for data science
    • R Operators
    • R Data Frame
    • R Analytics Tool
    • R Tree Package
    • Vectors in R
  • Control statement
    • If Statement in R
    • If Else Statement in R
    • Else if in R
    • Switch Statement in R
  • Loops
    • Loops in R
    • For Loop in R
    • Nested For Loop in R
    • While Loop in R
    • Next in R
  • Chart/graphs
    • Graphs in R
    • Bar Charts in R
    • Pie Chart in R
    • Histogram in R
    • Line Graph in R
    • Plot Function in R
    • Scatterplot in R
    • R Boxplot labels
  • Regression in R
    • Simple Linear Regression in R
    • Linear Regression in R
    • Multiple Linear Regression in R
    • Logistic Regression in R
    • Poisson Regression in R
    • OLS Regression in R
    • P-Value in Regression
  • Anova in R
    • ANOVA in R
    • One Way ANOVA in R
    • Two Way ANOVA in R
  • Data Structure
    • R list
    • Arrays in R
    • Data Frames in R
    • Factors in R
    • R Vectors
  • Programs
    • Functions in R
    • Boxplot in R
    • R Program Functions
    • Factorial in R
    • Random Number Generator in R
  • Interview question
    • R Interview Questions

KNN Algorithm in R

By Priya PedamkarPriya Pedamkar

KNN Algorithm in R

Introduction to KNN Algorithm in R

A mechanism that is based on the concept of nearest neighbor and where k is some constant represented by a certain number in a particular context, with the algorithm embodying certain useful features such as the use of input to predict output data points, has an application to problems of various nature, focuses on feature similarity so as to classify data, handle realistic data without making any assumptions, can be effectively used in classification problems; and that R programming provides a robust mechanism for its implementation is known as KNN algorithm in R programming.

Example: Let’s suppose you want to classify a touch screen and a keypad phone. There are various factors that involve in differentiating both phones. However, the factor that differentiates both phones is the keypad. So, when we receive a data point (i.e., phone). We compare it with the similar features of the neighbor data points to classify it as a keypad or a touch phone.

Start Your Free Data Science Course

Hadoop, Data Science, Statistics & others

Features of KNN Algorithm

Here we will study the features of the KNN Algorithm:

  • KNN algorithm uses input data to predict output set data points.
  • The algorithm can be applied to various sets of problems.
  • Focuses on feature similarity to classify the data.
  • KNN algorithm handles realistic data and doesn’t make any assumptions about the data points.
  • KNN memorizes the training data set rather than being intuitive. Also, it can be said that it has a lazy approach.
  • It can solve classification and regression problems.

Addressing Problems in KNN Algorithm in R

Following Addressing Problem:

1. Classification Problem

The classification problem values are discrete, just like whether you like to eat pizza with toppings or without. There is common ground. KNN Algorithm helps in solving such a problem.

2. Regression Problem

The regression problem comes into the picture when we have a dependent variable and an independent variable. Ex: BMI index. Typically, each row contains an observation or data point and an example.

The KNN Algorithm in R

Let’s look at the steps in the algorithm that is to be followed:

Step 1: Load the input data.

Step 2: Initialize K with the number of nearest neighbors.

Step 3: Calculating the data (i.e., the distance between the current and the nearest neighbor)

Step 4: Adding the distance to the current ordered data set.

Step 5: Picking up K entries and labeling them.

Step 6: Return the mean value for the regression problem.

Step 7: Return the mode value for classification problems.

Points to Remember while Implementing the KNN Algorithm

  • We should make sure the K value is greater than one; it hinders in prediction to be accurate.
  • The more the K value, the more accurate the prediction can be due to the majority.
  • It is preferable to have K as an odd number. Otherwise, it can lead to a tie-breaker.

KNN Pseudocode

In the below formula represents variables and represents data points where (i=1,2,3….)

Set(,)

Use Cases

Following are the Use Cases in KNN Algorithm in R:

1. Comparing products and Helping in Shopping Recommendations

When we buy a laptop or computer from an online e-commerce website, we also see shopping recommendations like buying anti-virus software or speakers. All this is because when a previous customer buys a laptop, it is mostly bought along with anti-virus or speakers. Machine learning helps in e-commerce recommendations.

2. Food Recommendations

Machine learning also helps in recommendations based on previously ordered food and also suggest restaurants accordingly.

Example of the KNN Algorithm

Following are the examples of the KNN algorithm:

1. Importing Data

Let’s take the dummy data about us predicting the t-shirt size of a guy with the help of height and weight.

Height (cms) Weight (kgs) Size
140 58 S
140 59 S
140 63 S
150 59 M
152 60 M
153 60 M
154 61 M
155 64 M
156 64 M
157 61 M
160 62 L
161 65 L
162 62 L
163 63 L
163 66 L
165 63 L
165 64 L
165 68 L

2. Finding the Similarities by Calculating Distance

We can use both Manhattan and Euclidean distance as the data is continuous. We calculate the distance between the new sample and training data set, then find K-closest.

Example: Let’s say ‘Raj’ has a height of 165 cms and weighs 63 Kgs. We calculate Euclidean distance by using the first observation with the new sample: SQRT ((165-140) ^2+ (63-58) ^2)

3. Finding K-nearest Neighbors

Let’s suppose K = 4; There are 4 customers in which 3 of them had medium size and 1 being large size. The best prediction is medium size suits Raj.

Difference Between KNN and K-mean

Following are the difference:

  • KNN is a supervised algorithm (dependent variable), whereas K-mean is an unsupervised algorithm (no dependent variable).
  • K-mean uses a clustering technique to split data points forming K-clusters.KNN uses K-nearest neighbors to classify data points and combines them.

Advantages and Disadvantages of KNN

Following are the advantages:

  • KNN algorithm is versatile, can be used for classification and regression problems.
  • No need for a prior model to build the KNN algorithm.
  • Simple and easy to implement.

Following are the disadvantages:

  •  The algorithm as the number of samples increase (i.e. no of variables)

Recommended Articles

This is a guide to KNN Algorithm in R. Here; we discuss features, examples, pseudocode, steps to be followed in KNN Algorithm. You can also go through our other related articles to learn more-

  1. Data Science Algorithms
  2. What is a genetic Algorithm?
  3. Routing Algorithms
  4. Neural Network Algorithms
  5. C++ Algorithm | Examples of C++ Algorithm
Popular Course in this category
R Programming Training (13 Courses, 20+ Projects)
  13 Online Courses |  20 Hands-on Projects |  120+ Hours |  Verifiable Certificate of Completion
4.5
Price

View Course

Related Courses

Statistical Analysis Training (15 Courses, 10+ Projects)4.9
All in One Data Science Bundle (360+ Courses, 50+ projects)4.8
Primary Sidebar
Footer
About Us
  • Blog
  • Who is EDUCBA?
  • Sign Up
  • Live Classes
  • Corporate Training
  • Certificate from Top Institutions
  • Contact Us
  • Verifiable Certificate
  • Reviews
  • Terms and Conditions
  • Privacy Policy
  •  
Apps
  • iPhone & iPad
  • Android
Resources
  • Free Courses
  • Database Management
  • Machine Learning
  • All Tutorials
Certification Courses
  • All Courses
  • Data Science Course - All in One Bundle
  • Machine Learning Course
  • Hadoop Certification Training
  • Cloud Computing Training Course
  • R Programming Course
  • AWS Training Course
  • SAS Training Course

ISO 10004:2018 & ISO 9001:2015 Certified

© 2023 - EDUCBA. ALL RIGHTS RESERVED. THE CERTIFICATION NAMES ARE THE TRADEMARKS OF THEIR RESPECTIVE OWNERS.

EDUCBA

*Please provide your correct email id. Login details for this Free course will be emailed to you

Let’s Get Started

By signing up, you agree to our Terms of Use and Privacy Policy.

EDUCBA

*Please provide your correct email id. Login details for this Free course will be emailed to you
EDUCBA

*Please provide your correct email id. Login details for this Free course will be emailed to you
EDUCBA Login

Forgot Password?

By signing up, you agree to our Terms of Use and Privacy Policy.

This website or its third-party tools use cookies, which are necessary to its functioning and required to achieve the purposes illustrated in the cookie policy. By closing this banner, scrolling this page, clicking a link or continuing to browse otherwise, you agree to our Privacy Policy

Loading . . .
Quiz
Question:

Answer:

Quiz Result
Total QuestionsCorrect AnswersWrong AnswersPercentage

Explore 1000+ varieties of Mock tests View more