EDUCBA

EDUCBA

MENUMENU
  • Free Tutorials
  • Free Courses
  • Certification Courses
  • 360+ Courses All in One Bundle
  • Login

Data Science vs Artificial Intelligence

By Priya PedamkarPriya Pedamkar

Home » Data Science » Data Science Tutorials » Head to Head Differences Tutorial » Data Science vs Artificial Intelligence

Data Science vs Artificial Intelligence

Difference Between Data Science vs Artificial Intelligence

Artificial intelligence is a large margin using perception for pattern recognition and unsupervised data with the mathematical, algorithm development and logical discrimination for the prospect of robotics technology to understand the neural network of the robotic technology. AI looks into is characterized as the investigation of “insightful operators” any gadget that sees its condition and takes activities that augment its risk of effectively accomplishing its goals. Data Science is an “idea to bring together measurements, information investigation, and their related strategies” so as to “comprehend and dissect real wonders” with data. It utilizes systems and speculations drawn from numerous fields inside the expansive regions of arithmetic, insights, data science, and software engineering, specifically from the subdomains of machine learning, characterization, group examination, vulnerability evaluation, computational science, information mining, databases, and representation.

Let us know more about AI and Data Science in detail:

Start Your Free Data Science Course

Hadoop, Data Science, Statistics & others

  •  Artificial Intelligence In the present, is mind-boggling and viable however no place close to human knowledge. People utilize the information exhibit around them and the information gathered in the past to make sense of everything without exception. In any case, AIs don’t have that capacity right now. AIs simply immense information dumps to clear their goals. This implies AIs require a colossal pool of information to accomplish something as straightforward as altering letters. Colloquially, the expression “man-made brainpower” is connected when a machine emulates “psychological” capacities that people connect with other human personalities for example “learning” and “critical thinking”
  • The extent of AI is debated: as machines turn out to be progressively proficient, assignments considered as requiring “insight” are regularly expelled from the definition, a wonder known as the AI impact, prompting the jest “AI is whatever hasn’t been done yet.
  • For example, optical character acknowledgment is habitually avoided by “man-made brainpower”, has turned into a routine technology. Capabilities by and large delegated AI starting in 2017 incorporate effectively understanding human speech, contending with an abnormal state in vital diversion frameworks, complex information, including pictures and recordings. Various models such as Bernoulli Model, naive Bayes model, etc.
  • Data Science is an interdisciplinary field of procedures and frameworks to extract learning or bits of knowledge from information in different structures. This implies information science enables AIs to make sense of answers to issues by connecting comparative information for some time later.
  • In a general sense, information science takes into consideration AIs to discover proper and significant data from those colossal pools speedier and all the more productively.
  • A case of this is Facebook’s facial acknowledgment framework which, after some time, accumulates a great deal of information about existing clients and applies similar methods for facial acknowledgment with new clients. Another illustration is Google’s self-driving autos which accumulate information from its surroundings progressively and forms those data to settle on smart choices out and about.

Data Science is an “idea to bring together measurements, information investigation, and their related strategies” so as to “comprehend and dissect real wonders” with data. It utilizes systems and speculations drawn from numerous fields inside the expansive regions of arithmetic, insights, data science, and software engineering, specifically from the subdomains of machine learning, characterization, group examination, vulnerability evaluation, computational science, information mining, databases, and representation.

Head to Head Comparison Between Data Science and Artificial Intelligence (Infographics)

Below is the Top 9 Comparison between the Data Science vs Artificial Intelligence

Data Science vs Artificial Intelligence

Key Differences between Data Science and Artificial Intelligence

Both are popular choices in the market; let us discuss some of the major Differences:

  1. Data Science is the collection and curating of mass data for analysis whereas Artificial Intelligence is implementing this data in Machine for understanding this data
  2. Data Science is a collection of skills such as Statistical technique whereas Artificial Intelligence algorithm technique.
  3. Data science use statistical learning whereas artificial intelligence is of machine learning’s
  4. Data Science observe a pattern in data for decision making whereas AIs look into an intelligent report for decision
  5. Data science look part of a loop from AIs loop of perception and planning with action
  6. In Data Science processing is a medium level for data manipulation whereas AIs high order processing of scientific data for manipulation
  7. In data science, the graphical representation is involved whereas in artificial intelligence algorithm and network node representation
  8. Artificial intelligence technique involves for robotic control process whereas data science in data mining and manipulation.

Data Science vs Artificial Intelligence Comparison Table

Following are some key comparisons

The Basic Of Comparisons  Data Science Artificial Intelligence
Meaning Data Science is of curating mass data for analytics and visualization Artificial Intelligence is implementing this data in Machine
Skills Statistical technique design and development Algorithm technique design and development
Technique Data Science is a Data Analytics technique Artificial Intelligence is a Machine learning technique
Use of Knowledge Data Science use statistical  learning for Analysis Artificial Intelligence is of  Machine Learning
Observation Patterns in Data for decision Intelligence in Data for decision
Solving Data science tends to use parts of this loop to solve specific problems Artificial intelligence represents the loop of perception and Planning with action
Processing Data Science  Medium level processing of Data for Data Manipulation Artificial Intelligence high order processing scientific data for manipulation
Graphic Data science involved in data representation in the various graphical format Artificial intelligence involves in algorithm network node representation
Control Data control and manipulation with Data Science technique Robotic control with artificial intelligence and machine learning techniques

Conclusion

In the field of investigative information handling, the following couple of years will see us change from selective utilization of choice help frameworks to extra utilization of frameworks that settle on choices for our benefit. Especially in the field of information examination, we are at present creating individual diagnostic answers for particular issues in spite of the fact that these arrangements can’t be utilized crosswise over various settings – for instance, an answer created to distinguish inconsistencies in stock value developments can’t be utilized to comprehend the substance of pictures. This will remain the case later on, in spite of the fact that AI frameworks will

Popular Course in this category
Sale
All in One Data Science Bundle (360+ Courses, 50+ projects)360+ Online Courses | 1500+ Hours | Verifiable Certificates | Lifetime Access
4.7 (3,220 ratings)
Course Price

View Course

Related Courses
Data Scientist Training (85 Courses, 67+ Projects)Tableau Training (5 Courses, 8+ Projects)Azure Training (6 Courses, 5 Projects, 4 Quizzes)Hadoop Training Program (20 Courses, 14+ Projects, 4 Quizzes)Data Visualization Training (15 Courses, 5+ Projects)

Incorporate individual connecting segments and subsequently have the capacity to deal with progressively perplexing assignments that are as of now held solely for people – a clear pattern that we would already be able to watch today. A framework that processes current information with respect to securities exchanges, as well as that additionally, takes after and breaks down the improvement of political structures in light of news writings or recordings, extract feelings from writings in sites or interpersonal organizations, screens and predicts applicable money related markers, and so on requires the combination of a wide range of subcomponents.

Recommended Article

This has been a guide to the top differences between data science vs artificial intelligence. Here we also discuss the data science vs artificial intelligence key differences with infographics, and comparison table. You may also have a look at the following articles –

  1. Data science vs Business intelligence
  2. Data Science vs Software Engineering
  3. Artificial Intelligence vs Business Intelligence
  4. Artificial Intelligence Applications Across Sectors

All in One Data Science Bundle (360+ Courses, 50+ projects)

360+ Online Courses

1500+ Hours

Verifiable Certificates

Lifetime Access

Learn More

5 Shares
Share
Tweet
Share
Primary Sidebar
Head to Head Differences Tutorial
  • Differences Tutorial
    • ArangoDB vs MongoDB
    • Cloud Computing vs Big Data Analytics
    • PostgreSQL vs MariaDB
    • Domo vs Tableau
    • Data Scientist vs Data Engineer vs Statistician
    • Big Data Vs Machine Learning
    • Business Intelligence vs Data Warehouse
    • Apache Kafka vs Flume
    • Data Science vs Machine Learning
    • Business Analytics Vs Predictive Analytics
    • Data mining vs Web mining
    • Data Science Vs Data Mining
    • Data Science Vs Business Analytics
    • Analyst vs Associate
    • Apache Hive vs Apache Spark SQL
    • Apache Nifi vs Apache Spark
    • Apache Spark vs Apache Flink
    • Apache Storm vs Kafka
    • Artificial Intelligence vs Business Intelligence
    • Artificial Intelligence vs Human Intelligence
    • Al vs ML vs Deep Learning
    • Assembly Language vs Machine Language
    • AWS vs AZURE
    • AWS vs Azure vs Google Cloud
    • Big Data vs Data Mining
    • Big Data vs Data Science
    • Big Data vs Data Warehouse
    • Blu-Ray vs DVD
    • Business Intelligence vs Big Data
    • Business Intelligence vs Business Analytics
    • Business Intelligence vs Data analytics
    • Business Intelligence VS Data Mining
    • Business Intelligence vs Machine Learning
    • Business Process Re-Engineering vs CI
    • Cassandra vs Elasticsearch
    • Cassandra vs Redis
    • Cloud Computing Public vs Private
    • Cloud Computing vs Fog Computing
    • Cloud Computing vs Grid Computing
    • Cloud Computing vs Hadoop
    • Computer Network vs Data Communication
    • Computer Science vs Data Science
    • Computer Scientist vs Data Scientist
    • Customer Analytics vs Web Analytics
    • Data Analyst vs Data Scientist
    • Data Analytics vs Business Analytics
    • Data Analytics vs Data Analysis
    • Data Analytics Vs Predictive Analytics
    • Data Lake vs Data Warehouse
    • Data Mining Vs Data Visualization
    • Data mining vs Machine learning
    • Data Mining Vs Statistics
    • Data Mining vs Text Mining
    • Data Science vs Artificial Intelligence
    • Data science vs Business intelligence
    • Data Science Vs Data Engineering
    • Data Science vs Data Visualization
    • Data Science vs Software Engineering
    • Data Scientist vs Big Data
    • Data Scientist vs Business Analyst
    • Data Scientist vs Data Engineer
    • Data Scientist vs Data Mining
    • Data Scientist vs Machine Learning
    • Data Scientist vs Software Engineer
    • Data visualisation vs Data analytics
    • Data vs Information
    • Data Warehouse vs Data Mart
    • Data Warehouse vs Database
    • Data Warehouse vs Hadoop
    • Data Warehousing VS Data Mining
    • DBMS vs RDBMS
    • Deep Learning vs Machine learning
    • Digital Analytics vs Digital Marketing
    • Digital Ocean vs AWS
    • DOS vs Windows
    • ETL vs ELT
    • Small Data Vs Big Data
    • Apache Hadoop vs Apache Storm
    • Hadoop vs HBase
    • Between Data Science vs Web Development
    • Hadoop vs MapReduce
    • Hadoop Vs SQL
    • Google Analytics vs Mixpanel
    • Google Analytics Vs Piwik
    • Google Cloud vs AWS
    • Hadoop vs Apache Spark
    • Hadoop vs Cassandra
    • Hadoop vs Elasticsearch
    • Hadoop vs Hive
    • Hadoop vs MongoDB
    • HADOOP vs RDBMS
    • Hadoop vs Spark
    • Hadoop vs Splunk
    • Hadoop vs SQL Performance
    • Hadoop vs Teradata
    • HBase vs HDFS
    • Hive VS HUE
    • Hive vs Impala
    • JDBC vs ODBC
    • Kafka vs Kinesis
    • Kafka vs Spark
    • Cloud Computing vs Data Analytics
    • Data Mining Vs Data Analysis
    • Data Science vs Statistics
    • Big Data Vs Predictive Analytics
    • MapReduce vs Yarn
    • Hadoop vs Redshift
    • Looker vs Tableau
    • Machine Learning vs Artificial Intelligence
    • Machine Learning vs Neural Network
    • Machine Learning vs Predictive Analytics
    • Machine Learning vs Predictive Modelling
    • Machine Learning vs Statistics
    • MariaDB vs MySQL
    • Mathematica vs Matlab
    • Matlab vs Octave
    • MATLAB vs R
    • MongoDB vs Cassandra
    • MongoDB vs DynamoDB
    • MongoDB vs HBase
    • MongoDB vs Oracle
    • MongoDB vs Postgres
    • MongoDB vs PostgreSQL
    • MongoDB vs SQL
    • MongoDB vs SQL server
    • MS SQL vs MYSQL
    • MySQL vs MongoDB
    • MySQL vs MySQLi
    • MySQL vs NoSQL
    • MySQL vs SQL Server
    • MySQL vs SQLite
    • Neural Networks vs Deep Learning
    • PIG vs MapReduce
    • Pig vs Spark
    • PL SQL vs SQL
    • Power BI Dashboard vs Report
    • Power BI vs Excel
    • Power BI vs QlikView
    • Power BI vs SSRS
    • Power BI vs Tableau
    • Power BI vs Tableau vs Qlik
    • PowerShell vs Bash
    • PowerShell vs CMD
    • PowerShell vs Command Prompt
    • PowerShell vs Python
    • Predictive Analysis vs Forecasting
    • Predictive Analytics vs Data Mining
    • Predictive Analytics vs Data Science
    • Predictive Analytics vs Descriptive Analytics
    • Predictive Analytics vs Statistics
    • Predictive Modeling vs Predictive Analytics
    • Private Cloud vs Public Cloud
    • Regression vs ANOVA
    • Regression vs Classification
    • ROLAP vs MOLAP
    • ROLAP vs MOLAP vs HOLAP
    • Spark SQL vs Presto
    • Splunk vs Elastic Search
    • Splunk vs Nagios
    • Splunk vs Spark
    • Splunk vs Tableau
    • Spring Cloud vs Spring Boot
    • Spring vs Hibernate
    • Spring vs Spring Boot
    • Spring vs Struts
    • SQL Server vs PostgreSQL
    • Sqoop vs Flume
    • Statistics vs Machine learning
    • Supervised Learning vs Deep Learning
    • Supervised Learning vs Reinforcement Learning
    • Supervised Learning vs Unsupervised Learning
    • Tableau vs Domo
    • Tableau vs Microstrategy
    • Tableau vs Power BI vs QlikView
    • Tableau vs QlikView
    • Tableau vs Spotfire
    • Talend Vs Informatica PowerCenter
    • Talend vs Mulesoft
    • Talend vs Pentaho
    • Talend vs SSIS
    • TensorFlow vs Caffe
    • Tensorflow vs Pytorch
    • TensorFlow vs Spark
    • TeraData vs Oracle
    • Text Mining vs Natural Language Processing
    • Text Mining vs Text Analytics
    • Cloud Computing vs Virtualization
    • Unit Test vs Integration Test?
    • Universal analytics vs Google Analytics
    • Visual Analytics vs Tableau
    • R vs Python
    • R vs SPSS
    • Star Schema vs Snowflake Schema
    • DDL vs DML
    • R vs R Squared
    • ActiveMQ vs Kafka
    • TDM vs FDM
    • Linear Regression vs Logistic Regression
    • Slf4j vs Log4j
    • Redis vs Kafka
    • Travis vs Jenkins
    • Fact Table vs Dimension Table
    • OLTP vs OLAP
    • Openstack vs Virtualization
    • Cluster v/s Factor analysis
    • Informatica vs Datastage
    • CCBA vs CBAP
    • SPSS vs EXCEL
    • Excel vs Tableau
    • Cassandra vs MySQL
    • RabbitMQ vs Kafka
    • SAAS vs Cloud
    • RabbitMQ vs Redis
    • AMQP vs MQTT
    • Forward Chaining vs Backward Chaining
    • Google Data Studio vs Tableau
    • ActiveMQ vs RabbitMQ
    • Cloud vs Data Center
    • Cores vs Threads
    • Inner Join vs Outer Join
    • ZeroMQ vs Kafka
    • Mxnet vs TensorFlow
    • Datadog vs Splunk
    • Redis vs Memcached
    • RDBMS vs NoSQL
    • AWS Direct Connect vs VPN
    • Cassandra vs Couchbase
    • Elegoo vs Arduino
    • Redis vs MongoDB
    • Chef vs Puppet
    • GSM vs GPRS
    • Keras vs TensorFlow vs PyTorch
    • Cloudflare vs CloudFront
    • Bitmap vs Vector
    • Left Join vs Right Join
    • IaaS vs PaaS
    • Blue Prism vs UiPath
    • GNSS vs GPS
    • Cloudflare vs Akamai
    • GCP vs AWS vs Azure
    • Arduino Mega vs Uno
    • Qualitative vs Quantitative Data
    • Arduino Micro vs Nano
    • PIC vs Arduino
    • PRTG vs Solarwinds
    • PostgreSQL vs SQLite
    • Metabase vs Tableau
    • Arduino Leonardo vs Uno
    • Arduino Due vs Mega
    • ETL Vs Database Testing
    • DBMS vs File System
    • CouchDB vs MongoDB
    • Arduino Nano vs Mini
    • IaaS vs PaaS vs SaaS
    • On-premise vs off-premise
    • Couchbase vs CouchDB
    • Tableau Dimension vs Measure
    • Cognos vs Tableau
    • Data vs Metadata
    • RethinkDB vs MongoDB
    • Cloudera vs Snowflake
    • HBase vs Cassandra
    • Business Analytics vs Business Intelligence
    • R Programming vs Python
    • MongoDB vs Hadoop
    • MySQL vs Oracle
    • OData vs GraphQL
    • Soft Computing vs Hard Computing
    • Binary Tree vs Binary Search Tree
    • Datadog vs CloudWatch
    • B tree vs Binary tree
    • Cloudera vs Hortonworks
    • DevSecOps vs DevOps
    • PostgreSQL Varchar vs Text
    • PostgreSQL Database vs schema
    • MapReduce vs spark
    • Hypervisor vs Docker
    • SciLab vs Octave
    • DocumentDB vs DynamoDB
    • PostgreSQL union vs union all
    • OrientDB vs Neo4j
    • Data visualization vs Business Intelligence
    • QlikView vs Qlik Sense
    • Neo4j vs MongoDB
    • Postgres Schema vs Database
    • Mxnet vs Pytorch
    • Naive Bayes vs Logistic Regression
    • Random Forest vs Decision Tree
    • Random Forest vs XGBoost
    • DynamoDB vs Cassandra
    • Looker vs Power BI
    • PostgreSQL vs RedShift
    • Presto vs Hive
    • Random forest vs Gradient boosting
    • Gradient boosting vs AdaBoost
    • Amazon rds vs Redshift
    • Bigquery vs Bigtable
    • Data Architect vs Data Engineer
    • DataSet vs DataTable
    • dataset vs dataframe
    • Dataset vs Database
    • New Relic vs Splunk
    • Data Architect and Management Designer
    • Data Engineer vs Data Analyst
    • Grafana vs Tableau
    • MySQL text vs Varchar
    • Relational Database vs Flat File
    • Datadog vs Prometheus
    • Neo4j vs Neptune
    • Data Mining vs Data warehousing
    • DocumentDB vs MongoDB
    • PostScript vs PCL
    • QRadar vs Splunk
    • Qlik Sense vs Tableau
    • DigitalOcean vs Google Cloud
    • PostgreSQL vs Elasticsearch

Related Courses

Online Data Science Course

Online Tableau Training

Azure Training Course

Hadoop Certification Course

Data Visualization Courses

All in One Data Science Course

Footer
About Us
  • Blog
  • Who is EDUCBA?
  • Sign Up
  • Live Classes
  • Corporate Training
  • Certificate from Top Institutions
  • Contact Us
  • Verifiable Certificate
  • Reviews
  • Terms and Conditions
  • Privacy Policy
  •  
Apps
  • iPhone & iPad
  • Android
Resources
  • Free Courses
  • Database Management
  • Machine Learning
  • All Tutorials
Certification Courses
  • All Courses
  • Data Science Course - All in One Bundle
  • Machine Learning Course
  • Hadoop Certification Training
  • Cloud Computing Training Course
  • R Programming Course
  • AWS Training Course
  • SAS Training Course

© 2022 - EDUCBA. ALL RIGHTS RESERVED. THE CERTIFICATION NAMES ARE THE TRADEMARKS OF THEIR RESPECTIVE OWNERS.

EDUCBA
Free Data Science Course

Hadoop, Data Science, Statistics & others

*Please provide your correct email id. Login details for this Free course will be emailed to you

By signing up, you agree to our Terms of Use and Privacy Policy.

EDUCBA
Free Data Science Course

Hadoop, Data Science, Statistics & others

*Please provide your correct email id. Login details for this Free course will be emailed to you

By signing up, you agree to our Terms of Use and Privacy Policy.

Let’s Get Started

By signing up, you agree to our Terms of Use and Privacy Policy.

Loading . . .
Quiz
Question:

Answer:

Quiz Result
Total QuestionsCorrect AnswersWrong AnswersPercentage

Explore 1000+ varieties of Mock tests View more

EDUCBA Login

Forgot Password?

By signing up, you agree to our Terms of Use and Privacy Policy.

This website or its third-party tools use cookies, which are necessary to its functioning and required to achieve the purposes illustrated in the cookie policy. By closing this banner, scrolling this page, clicking a link or continuing to browse otherwise, you agree to our Privacy Policy

EDUCBA

*Please provide your correct email id. Login details for this Free course will be emailed to you

By signing up, you agree to our Terms of Use and Privacy Policy.

Special Offer - All in One Data Science Bundle (360+ Courses, 50+ projects) Learn More