- 122

Distributed Deep Learning with Apache Spark and Keras. Distributed Keras is a distributed deep learning framework built op top of Apache Spark and Keras, with a focus on "state-of-the-art" distributed optimization algorithms. We designed the framework in such a way that a new distributed optimizer could be implemented with ease, thus enabling a person to focus on research. Several distributed methods are supported, such as, but not restricted to, the training of ensembles and models using data parallel methods.

http://joerihermans.com/work/distributed-keras/https://github.com/cerndb/dist-keras

Tags | machine-learning deep-learning apache-spark data-parallelism distributed-optimizers keras optimization-algorithms tensorflow data-science hadoop |

Implementation | Python |

License | GPL |

Platform | Windows Linux |

IPython Notebook(s) demonstrating deep learning functionality.IPython Notebook(s) demonstrating scikit-learn functionality.

machine-learning deep-learning data-science big-data aws tensorflow theano caffe scikit-learn kaggle spark mapreduce hadoop matplotlib pandas numpy scipy kerasThis library is the official extension repository for the python deep learning library Keras. It contains additional layers, activations, loss functions, optimizers, etc. which are not yet available within Keras itself. All of these additional modules can be used in conjunction with core Keras models and modules. As the community contributions in Keras-Contrib are tested, used, validated, and their utility proven, they may be integrated into the Keras core repository. In the interest of keeping Keras succinct, clean, and powerfully simple, only the most useful contributions make it into Keras. This contribution repository is both the proving ground for new functionality, and the archive for functionality that (while useful) may not fit well into the Keras paradigm.

keras theano tensorflow machine-learning deep-learning neural-networks data-science"Data is the new oil" is a saying which you must have heard by now along with the huge interest building up around Big Data and Machine Learning in the recent past along with Artificial Intelligence and Deep Learning. Besides this, data scientists have been termed as having "The sexiest job in the 21st Century" which makes it all the more worthwhile to build up some valuable expertise in these areas. Getting started with machine learning in the real world can be overwhelming with the vast amount of resources out there on the web. "Practical Machine Learning with Python" follows a structured and comprehensive three-tiered approach packed with concepts, methodologies, hands-on examples, and code. This book is packed with over 500 pages of useful information which helps its readers master the essential skills needed to recognize and solve complex problems with Machine Learning and Deep Learning by following a data-driven mindset. By using real-world case studies that leverage the popular Python Machine Learning ecosystem, this book is your perfect companion for learning the art and science of Machine Learning to become a successful practitioner. The concepts, techniques, tools, frameworks, and methodologies used in this book will teach you how to think, design, build, and execute Machine Learning systems and projects successfully.

machine-learning deep-learning text-analytics classification clustering natural-language-processing computer-vision data-science spacy nltk scikit-learn prophet time-series-analysis convolutional-neural-networks tensorflow keras statsmodels pandas deep-neural-networkskeras-rl implements some state-of-the art deep reinforcement learning algorithms in Python and seamlessly integrates with the deep learning library Keras. Just like Keras, it works with either Theano or TensorFlow, which means that you can train your algorithm efficiently either on CPU or GPU. Furthermore, keras-rl works with OpenAI Gym out of the box. This means that evaluating and playing around with different algorithms is easy. Of course you can extend keras-rl according to your own needs. You can use built-in Keras callbacks and metrics or define your own. Even more so, it is easy to implement your own environments and even algorithms by simply extending some simple abstract classes. In a nutshell: keras-rl makes it really easy to run state-of-the-art deep reinforcement learning algorithms, uses Keras and thus Theano or TensorFlow and was built with OpenAI Gym in mind.

keras tensorflow theano reinforcement-learning neural-networks machine-learningTensorFlowOnSpark brings scalable deep learning to Apache Hadoop and Apache Spark clusters. By combining salient features from deep learning framework TensorFlow and big-data frameworks Apache Spark and Apache Hadoop, TensorFlowOnSpark enables distributed deep learning on a cluster of GPU and CPU servers.TensorFlowOnSpark was developed by Yahoo for large-scale distributed deep learning on our Hadoop clusters in Yahoo's private cloud.

tensorflow spark yahoo machine-learning cluster featuredMMLSpark provides a number of deep learning and data science tools for Apache Spark, including seamless integration of Spark Machine Learning pipelines with Microsoft Cognitive Toolkit (CNTK) and OpenCV, enabling you to quickly create powerful, highly-scalable predictive and analytical models for large image and text datasets.MMLSpark requires Scala 2.11, Spark 2.1+, and either Python 2.7 or Python 3.5+. See the API documentation for Scala and for PySpark.

machine-learning spark cntk pyspark azure microsoft-machine-learning microsoft mlThe ML workspace is an all-in-one web-based IDE specialized for machine learning and data science. It is simple to deploy and gets you started within minutes to productively built ML solutions on your own machines. This workspace is the ultimate tool for developers preloaded with a variety of popular data science libraries (e.g., Tensorflow, PyTorch, Keras, Sklearn) and dev tools (e.g., Jupyter, VS Code, Tensorboard) perfectly configured, optimized, and integrated. The workspace requires Docker to be installed on your machine (ðŸ“– Installation Guide).

nlp docker kubernetes data-science machine-learning r deep-learning jupyter anaconda tensorflow gpu scikit-learn vscode jupyter-notebook data-visualization pytorch neural-networks data-analysis jupyter-labXLearning is a convenient and efficient scheduling platform combined with the big data and artificial intelligence, support for a variety of machine learning, deep learning frameworks. XLearning is running on the Hadoop Yarn and has integrated deep learning frameworks such as TensorFlow, MXNet, Caffe, Theano, PyTorch, Keras, XGBoost. XLearning has the satisfactory scalability and compatibility.Besides the distributed mode of TensorFlow and MXNet frameworks, XLearning supports the standalone mode of all deep learning frameworks such as Caffe, Theano, PyTorch. Moreover, XLearning allows the custom versions and multi-version of frameworks flexibly.

hadoop tensorflow caffe mxnet yarnKeras is a high-level neural networks API, written in Python and capable of running on top of TensorFlow, CNTK, or Theano. It was developed with a focus on enabling fast experimentation. Being able to go from idea to result with the least possible delay is key to doing good research.

deep-learning tensorflow theano neural-networks machine-learning data-scienceStellarGraph is a Python library for machine learning on graphs and networks. StellarGraph is built on TensorFlow 2 and its Keras high-level API, as well as Pandas and NumPy. It is thus user-friendly, modular and extensible. It interoperates smoothly with code that builds on these, such as the standard Keras layers and scikit-learn, so it is easy to augment the core graph machine learning algorithms provided by StellarGraph. It is thus also easy to install with pip or Anaconda.

machine-learning graphs machine-learning-algorithms networkx graph-data graph-analysis graph-machine-learning link-prediction graph-convolutional-networks gcn saliency-map interpretability geometric-deep-learning graph-neural-networks heterogeneous-networks stellargraph-librarySchematically, elephas works as follows. Elephas brings deep learning with Keras to Spark. Elephas intends to keep the simplicity and high usability of Keras, thereby allowing for fast prototyping of distributed models, which can be run on massive data sets. For an introductory example, see the following iPython notebook.

spark keras neural-networks deep-learning distributed-computingA distributed deep learning library for Apache Spark.

deep-learning spark neural-network big-data hadoop keras aiWhile research in Deep Learning continues to improve the world, we use a bunch of tricks to implement algorithms with TensorLayer day to day. Here are a summary of the tricks to use TensorLayer. If you find a trick that is particularly useful in practice, please open a Pull Request to add it to the document. If we find it to be reasonable and verified, we will merge it in.

tensorlayer tensorflow deep-learning machine-learning data-science neural-network reinforcement-learning neural-networks tensorflow-tutorials tensorflow-models computer-vision tensorflow-framework tensorflow-library tflearn keras tensorboard nlp natural-language-processing lasagne tensorflow-experimentsWelcome to Polyaxon, a platform for building, training, and monitoring large scale deep learning applications. Polyaxon deploys into any data center, cloud provider, or can be hosted and managed by Polyaxon, and it supports all the major deep learning frameworks such as Tensorflow, MXNet, Caffe, Torch, etc.

deep-learning machine-learning artificial-intelligence data-science reinforcement-learning kubernetes tensorflow pytorch keras mxnet caffe ai dl ml k8sauto_ml is designed for production. Here's an example that includes serializing and loading the trained model, then getting predictions on single dictionaries, roughly the process you'd likely follow to deploy the trained model. All of these projects are ready for production. These projects all have prediction time in the 1 millisecond range for a single prediction, and are able to be serialized to disk and loaded into a new environment after training.

machine-learning data-science automated-machine-learning gradient-boosting scikit-learn machine-learning-pipelines machine-learning-library production-ready automl lightgbm analytics feature-engineering hyperparameter-optimization deep-learning xgboost keras deeplearning tensorflow artificial-intelligenceTest tube is a python library to track and parallelize hyperparameter search for Deep Learning and ML experiments. It's framework agnostic and built on top of the python argparse API for ease of use. If you're a researcher, test-tube is highly encouraged as a way to post your paper's training logs to help add transparency and show others what you've tried that didn't work.

deep-learning machine-learning tensorflow hyperparameter-optimization neural-networks data-science keras pytorch caffe2 caffe chainer grid-search random-searchKeras is a high-level neural networks API, written in Python and capable of running on top of TensorFlow, CNTK, or Theano. It was developed with a focus on enabling fast experimentation. Being able to go from idea to result with the least possible delay is key to doing good research. Read the documentation at Keras.io.

deep-learning tensorflow neural-networks machine-learning data-scienceA comprehensive list of Deep Learning / Artificial Intelligence and Machine Learning tutorials - rapidly expanding into areas of AI/Deep Learning / Machine Vision / NLP and industry specific areas such as Automotives, Retail, Pharma, Medicine, Healthcare by Tarry Singh until at-least 2020 until he finishes his Ph.D. (which might end up being inter-stellar cosmic networks! Who knows! ðŸ˜€)

machine-learning deep-learning tensorflow pytorch keras matplotlib aws kaggle pandas scikit-learn torch artificial-intelligence neural-network convolutional-neural-networks tensorflow-tutorials python-data ipython-notebook capsule-networkThis guide is a collection of distributed training examples (that can act as boilerplate code) and a tutorial of basic distributed TensorFlow. Many of the examples focus on implementing well-known distributed training schemes, such as those available in dist-keras which were discussed in the author's blog post. Almost all the examples can be run on a single machine with a CPU, and all the examples only use data-parallelism (i.e., between-graph replication).

Deep learning is a group of exciting new technologies for neural networks. Through a combination of advanced training techniques and neural network architectural components, it is now possible to create neural networks of much greater complexity. Deep learning allows a neural network to learn hierarchies of information in a way that is like the function of the human brain. This course will introduce the student to computer vision with Convolution Neural Networks (CNN), time series analysis with Long Short-Term Memory (LSTM), classic neural network structures and application to computer security. High Performance Computing (HPC) aspects will demonstrate how deep learning can be leveraged both on graphical processing units (GPUs), as well as grids. Focus is primarily upon the application of deep learning to problems, with some introduction mathematical foundations. Students will use the Python programming language to implement deep learning using Google TensorFlow and Keras. It is not necessary to know Python prior to this course; however, familiarity of at least one programming language is assumed. This course will be delivered in a hybrid format that includes both classroom and online instruction. This syllabus presents the expected class schedule, due dates, and reading assignments. Download current syllabus.

neural-network machine-learning tensorflow keras deeplearning
We have large collection of open source products. Follow the tags from
Tag Cloud >>

Open source products are scattered around the web. Please provide information
about the open source projects you own / you use.
**Add Projects.**