EDUCBA

EDUCBA

MENUMENU
  • Free Tutorials
  • Free Courses
  • Certification Courses
  • 360+ Courses All in One Bundle
  • Login
Home Data Science Data Science Tutorials SQL Tutorial SQLAlchemy Metadata
Secondary Sidebar
SQL Tutorial
  • SqlAlchemy
    • What is SQLAlchemy
    • SqlAlchemy ORM
    • SQLAlchemy count
    • SQLAlchemy update object
    • SQLAlchemy pip
    • SQLAlchemy Connection
    • SQLAlchemy Metadata
    • SQLAlchemy Raw SQL
    • SQLAlchemy Filter in List
    • SQLAlchemy Alias
    • SQLAlchemy unique
    • SQLAlchemy JSONB
    • SQLAlchemy Async
    • SQLAlchemy Types
    • SQLAlchemy Many to Many
    • SQLAlchemy Example
    • SQLAlchemy Model
    • SQLAlchemy Data Types
    • SQLAlchemy Filter
    • SQLAlchemy SQLite
    • SQLAlchemy DateTime
    • SQLAlchemy create_engine
    • SQLAlchemy Delete
    • SQLAlchemy Migrations
  • Basic
    • What is SQL
    • Careers in SQL
    • Careers in SQL Server
    • IS SQL Microsoft?
    • SQL Management Tools
    • What is SQL Developer
    • Uses of SQL
    • How to Install SQL Server
    • What is SQL Server
    • SQL Quick References
    • SQL Like Wildcard
    • SQL Like with Multiple Values
    • SQL Examples
    • SQL Server Versions
    • SQL DROP DB
    • SQL Case Insensitive
    • SQL Expressions
    • Database in SQL
    • SQL Data Types
    • SQL Keywords
    • Composite Key in SQL
    • SQL WAITFOR
    • SQL Constraints
    • Transactions in SQL
    • First Normal Form
    • SQL Server Data Types
    • SQL Administration
    • SQL Variables
    • SQL Enum
    • SQL GROUP BY WHERE
    • SQL ROW
    • SQL EXECUTE
    • SQL EXCLUDE
    • SQL Performance Tuning
    • SQL UUID
    • Begin SQL
    • SQL Update Join
    • Cheat sheet SQL
  • Operators
    • SQL Operators
    • SQL Arithmetic Operators
    • SQL Logical Operators
    • SQL String Operators
    • Ternary Operator in SQL
  • Commands
    • SQL Commands
    • sqlplus set commands
    • SQL Alter Command
    • SQL Commands Update
    • SQL DML Commands
    • SQL DDL Commands
    • FETCH in SQL
  • Clause
    • SQL Clauses
    • SQL IN Operator
    • SQL SELECT DISTINCT Multiple Columns
    • SQL Null Values
    • SQL LIKE
    • SQL LIKE Query
    • SQL LIKE Operator
    • SQL LIKE Clause
    • SQL NOT Operator
    • SQL Minus
    • SQL WHERE Clause
    • SQL with Clause
    • SQL HAVING Clause
    • SQL HAVING Clause
    • SQL GROUP BY DAY
    • ORDER BY Clause in SQL
    • SQL ORDER BY CASE
    • SQL ORDER BY DESC
    • SQL ORDER BY DATE
    • SQL ORDER BY Alphabetical
    • SQL ORDER BY Ascending
    • SQL Order by Count
    • SQL GROUP BY Month
    • SQL GROUP BY Multiple Columns
    • SQL GROUPING SETS
  • Queries
    • SQL Insert Query
    • SQL SELECT Query
    • SQL SELECT RANDOM
    • SQL Except Select
    • SQL Subquery
    • SQL SELECT DISTINCT
    • SQL WITH AS Statement
  • Keys
    • SQL Keys
    • SQL Foreign Key
    • Primary Key in SQL
    • Foreign Key in SQL
    • Unique Key in SQL
    • SQL UNIQUE Constraint
    • SQL Primary Key
    • Alternate Key in SQL
    • SQL Super Key
  • Functions
    • SQL Date Function
    • SQL Server Functions
    • SQL String Functions
    • SQL Compare String
    • Timestamp to Date in SQL
    • SQL REGEX
    • SQL Window Functions
    • SQL Syntax
    • SQL CONCAT
    • SQL ALTER TABLE
    • SQL MOD()
    • SQL Timestamp
    • SQL Min and Max
    • SQL TO_DATE()
    • SQL DATEADD()
    • SQL DATEDIFF()
    • SQL HOUR()
    • SQLite? functions
    • ANY in SQL
    • LIKE Query in SQL
    • SQL NOT NULL
    • SQL NOT IN
    • SQL MAX()
    • SQL MIN()
    • SQL SUM()
    • SQL COUNT
    • SQL identity
    • SQL DELETE Trigger
    • SQL Declare Variable
    • SQL Text Search
    • SQL COUNT DISTINCT
    • SQL TEXT
    • SQL Limit Order By
    • BETWEEN in SQL
    • LTRIM() in SQL
    • TOP in SQL
    • SQL Select Top
    • Merge SQL
    • SQL TRUNCATE()
    • SQL UNION
    • SQL ALL
    • SQL INTERSECT
    • SQL Alias
    • SQL Server Substring
    • CUBE in SQL
    • SQL RANK()
    • SQL CTE
    • SQL LAG()
    • SQL MID
    • SQL avg()
    • SQL WEEK
    • SQL DELETE
    • SQL DATEPART()
    • SQL DECODE()
    • SQL DENSE_RANK()
    • SQL NTILE()
    • SQL NULLIF()
    • SQL Stuff
    • SQL Ceiling
    • SQL EXISTS
    • SQL LEAD()
    • SQL COALESCE
    • SQL BLOB
    • SQL ROW_NUMBER
    • SQL Server Replace
    • SQL Ranking Function
    • SQL Server Permission
  • T-SQL
    • T-SQL pivot
    • T-SQL Formatter
    • T-SQL TRY CATCH
    • T-SQL CTE
    • T-SQL CASE
    • T-SQL DATEPART
    • T-SQL Date Format
    • T-SQL ROUND
    • T-SQL Loop
    • T-SQL IIF
    • T-SQL Union
    • T-SQL CREATE TABLE
    • T-SQL INSERT
    • T-SQL Stuff
    • T-SQL ISNULL
    • T-SQL ADD Column
    • T-SQL DATEDIFF
  • Joins
    • Join Query in SQL
    • Types of Joins in SQL
    • Types of Joins in SQL Server
    • SQL Inner Join
    • SQL Join Two Tables
    • SQL Delete Join
    • SQL Left Join
    • LEFT OUTER JOIN in SQL
    • SQL Right Join
    • SQL Cross Join
    • SQL Outer Join
    • SQL Full Join
    • SQL Self Join
    • Natural Join SQL
    • SQL Multiple Join
  • Advanced
    • MDF File in SQL Server
    • SQL Aliases
    • SQL Hosting
    • SQL Auto Increment
    • SQL Injection
    • SQL Wildcards
    • SQL Check
    • SQL Indexes
    • Select Distinct
    • SQL BETWEEN
    • SQLPlus spool
    • SQL Create Table
    • SQL Schema
    • Comparison Operators in SQL
    • SQL_plus
    • SQL Formatter
    • SQL LEFT INNER JOIN
    • SQL Plus Command
    • SQLPlus not found
    • SQL Injection Attack
    • Aggregate Functions in SQL
    • SQL REVOKE
    • SQL Select Distinct Count
    • IF ELSE Statement in SQL
    • SQL CASE Statement
    • SQL While Loop
    • SQL BIGINT
    • SQL Crosstab
    • SQL Wildcard Character
    • SQL INSTR()
    • SQL now
    • SQL synonyms
    • SQLite?export to csv
    • What is Procedure in SQL
    • Stored Procedure in SQL?
    • SQL Server Constraints
    • SQL DELETE ROW
    • Column in SQL
    • Table in SQL
    • SQL Virtual Table
    • SQL Merge Two Tables
    • SQL Table Partitioning
    • SQL Temporary Table
    • SQL Clone Table
    • SQL Rename Table
    • SQL LOCK TABLE
    • SQL Clear Table
    • SQL DESCRIBE TABLE
    • SQL Mapping
    • Cursors in SQL
    • AND in SQL
    • Wildcard in SQL
    • SQL FETCH NEXT
    • SQL Views
    • SQL Delete View
    • Triggers in SQL
    • SQL UPDATE Trigger
    • SQL AFTER UPDATE Trigger
    • SQL Update Statement
    • SQL DROP TRIGGER
    • SQL DROP Table
    • Types of SQL Views
    • SQL Port
    • SQL Clustered Index
    • SQL COMMIT
    • Distinct Keyword in SQL
    • PARTITION BY in SQL
    • SQL Set Operators
    • SQL UNION ALL
    • Metadata in SQL
    • SQL Bulk Insert
    • Array in SQL
    • SQL REGEXP
    • JSON in SQL
    • SQL For loop
    • EXPLAIN in SQL
    • ROLLUP in SQL
    • Escape Character SQL
    • SQL Cluster
    • SQL Backup
    • SQL Pattern Matching
    • SQL Users
    • ISNULL SQL Server
    • SQL pivot
    • SQL Import CSV
    • SQL if then else
    • SQL ignore-case
    • SQL Matches
    • SQL Search String
    • SQL Column Alias
    • SQL extensions
    • SQL Substring Function
    • Charindex SQL
  • NoSQL
    • NoSQL Databases List
    • NoSQL Data Modeling
    • Types of NoSQL Databases
    • NoSQL Injection
    • NoSQL vs SQL Databases
    • NoSQL Use Cases
    • NoSQL Key Value
  • Interview Questions
    • SQL Interview Questions
    • Advance SQL Interview Questions
    • SQL Joins Interview Questions
    • SQL Server Interview Questions
    • SQL Current Month

Related Courses

JDBC Training Course

PHP course

Windows 10 Training

SQL Course Training

PL/SQL Certification Courses

Oracle Certification Courses

SQLAlchemy Metadata

SQLAlchemy Metadata

Introduction to SQLAlchemy Metadata

SQLAlchemy Metadata acts as an interface that helps describe the objects of the tables inside the database. Usually, the metadata object comprises many table objects representing all the database tables, and the Column object describes columns of every database table in the python framework. However, a single application of python needs only a single metadata thing and is sufficient for it. Here, we will see at following integrities of SQLAlchemy consisting of what is sqlalchemy metadata, sqlalchemy Metadata Schema, sqlalchemy metadata databases, examples, and conclusion about the same.

What is SQLAlchemy Metadata?

SQLAlchemy metadata is used to describe the single or multiple databases that the python application is using. The complete detailed structure of the database is defined inside the metadata object using the data structures of python for every column of every table in the database. Metadata’s database information comprises two types of things named Tables and Columns.

The primary use and purpose of database Metadata are an ORM tool for object-relational mapping and generating the necessary SQL queries inside the application. Metadata in SQLAlchemy proves to be helpful in the generation of the database schema. Some virtual objects required in Metadata and used more often include tables, columns, and Metadata.

SQLAlchemy Metadata Schema

Schema is nothing but the structure of various tables inside the database described by using metadata in SQLAlchemy. Let us first understand how queries are generated and how to define schema with the help of an example. The queries are formed on the tables inside the database. In SQLAlchemy’s Metadata, the tables inside the database are referred to with the help of the Table object, while columns of the table in the database are referred to with the use of the Column object.

Start Your Free Data Science Course

Hadoop, Data Science, Statistics & others

The object of Metadata is made up of Table objects paired up with their names in the database.

We can create an object of Metadata by following the below syntax:

Syntax:

From sqlalchemy import MetaData
Sample_object_metadata = MetaData()

Creating a single instance of MetaData suffices the needs of the entire application. We can now look at how the schema is defined by considering one table named educba_articles having columns article_name, no_of_pages, and writer with the article_id column acting as the primary key.

We can now go for defining the schema by using the below code:

Code:

from sqlalchemy import MetaData
from sqlalchemy import Integer, String, Column, Table
sample_object_metadata=MetaData()
articles_table = Table(
"educba_articles",
sample_object_metadata,
Column('article_id', Integer, primary_key=True),
Column('article_name', String(30)),
Column('no_of_pages',Integer),
Column('writer', String(80))
)

The Table object in the above code refers to the database table, which is further assigned to the object of MetaData. The column refers to the column of the table existing in the database and is given to the table’s object. The Column object is generally made up of the column’s name in string format and the object type that is allowed to store in that column which can be String, Integer, Boolean, datatime, etc.

The above code refers to the following table of educba_articles as shown below:

SQLAlchemy Metadata 1

SQLAlchemy metadata databases

The database can be described in detail in the python application using the object of MetaData of SQLAlchemy. We can create and define the database’s schema by describing the tables as shown in the above format for accessing the table’s data in the database inside the python application.

We can access the values inside the tables of the database by using SQLAlchemy’s Metadata with the help of the format shown below:

We can use the object created while describing the schema to fetch the table’s name.

For example, if we want to access the name of the table in the above-described schema, then we can make the use of the below statement:

Code:

articles_table.name

Output:
SQLAlchemy Metadata 2

All the columns of the table usually get stored in the associative array named table_name.c, which means using the .c notation, we can access the information about the table’s column.

For example, if you want to access the article_name column, we can make the use of the below command:

All in One Data Science Bundle(360+ Courses, 50+ projects)
Python TutorialMachine LearningAWSArtificial Intelligence
TableauR ProgrammingPowerBIDeep Learning
Price
View Courses
360+ Online Courses | 50+ projects | 1500+ Hours | Verifiable Certificates | Lifetime Access
4.7 (86,354 ratings)

Code:

articles_table.c.article_name

Output:

SQLAlchemy Metadata 4

To access the name of the column, you can execute the below command:

Code:

articles_table.c.article_name.name

Output:

simply access the name of column

To only access the column storage type that is the data type of column, we can execute the command shown below:

Code:

articles_table.c.article_name.type

The execution of the above command only retrieves the type of the column, which is as shown below:

Output:

retrieves the type

Similarly, suppose we want to retrieve the primary vital details. In that case, all you need to do is append the primary_key keyword after the hierarchical flow is shown above, which will get the information about the primary key associated with the current table.

We can create the tables and drop all the tables present inside the database using the methods of MetaData named createAll() and dropAll(), which will delete all the tables of that particular metadata object. Remember, while calling this method, you must use instances of Metadata you created in your code.

Example of SQLAlchemy Metadata

Given below is the example of SQLAlchemy Metadata:

Let us consider one example which will contain multiple columns of various types of data types and formats. We will create a table named educba_writers which will have columns of types DateTime used for timestamp value.

Code:

from sqlalchemy import create_engine
from sqlalchemy import Numeric, DateTime, Enum
writer_table = Table(
"educba_writers",
educba_metadata_obj,
Column("writer_id", String(50), primary_key=True),
Column("Date_of_joining", DateTime),
Column("rate_per_article", Numeric(100, 2)),
Column("article_type", boolean),
)
# creating an engine object
sample_engine = create_engine("sqlite+pysqlite:///:educba:",
echo=True, future=True)
# emitting DDL
educba_metadata_obj.create_all(sample_engine)

Output:

The output of the above code refers to the following table of educba_writers as shown below:

multiple columns of various types

Conclusion

We can use SQLAlchemy Metadata to describe all the tables, columns, and database-related details in terms of python data structures in the python application by using the instance object of MetaData SQLAlchemy.

Recommended Articles

This is a guide to SQLAlchemy Metadata. Here we discuss the introduction, SQLAlchemy metadata schema, and example. You may also have a look at the following articles to learn more –

  1. SQL ORDER BY DESC
  2. SQL EXECUTE
  3. SQL EXCLUDE
  4. MySQL InnoDB Cluster
Popular Course in this category
JDBC Training (6 Courses, 7+ Projects)
  6 Online Courses |  7 Hands-on Projects |  37+ Hours |  Verifiable Certificate of Completion
4.5
Price

View Course

Related Courses

PHP Training (5 Courses, 3 Project)4.9
Windows 10 Training (4 Courses, 4+ Projects)4.8
SQL Training Program (7 Courses, 8+ Projects)4.7
PL SQL Training (4 Courses, 2+ Projects)4.7
Oracle Training (14 Courses, 8+ Projects)4.7
0 Shares
Share
Tweet
Share
Primary Sidebar
Footer
About Us
  • Blog
  • Who is EDUCBA?
  • Sign Up
  • Live Classes
  • Corporate Training
  • Certificate from Top Institutions
  • Contact Us
  • Verifiable Certificate
  • Reviews
  • Terms and Conditions
  • Privacy Policy
  •  
Apps
  • iPhone & iPad
  • Android
Resources
  • Free Courses
  • Database Management
  • Machine Learning
  • All Tutorials
Certification Courses
  • All Courses
  • Data Science Course - All in One Bundle
  • Machine Learning Course
  • Hadoop Certification Training
  • Cloud Computing Training Course
  • R Programming Course
  • AWS Training Course
  • SAS Training Course

ISO 10004:2018 & ISO 9001:2015 Certified

© 2022 - EDUCBA. ALL RIGHTS RESERVED. THE CERTIFICATION NAMES ARE THE TRADEMARKS OF THEIR RESPECTIVE OWNERS.

EDUCBA
Free Data Science Course

SPSS, Data visualization with Python, Matplotlib Library, Seaborn Package

*Please provide your correct email id. Login details for this Free course will be emailed to you

By signing up, you agree to our Terms of Use and Privacy Policy.

EDUCBA Login

Forgot Password?

By signing up, you agree to our Terms of Use and Privacy Policy.

EDUCBA
Free Data Science Course

Hadoop, Data Science, Statistics & others

*Please provide your correct email id. Login details for this Free course will be emailed to you

By signing up, you agree to our Terms of Use and Privacy Policy.

EDUCBA

*Please provide your correct email id. Login details for this Free course will be emailed to you

By signing up, you agree to our Terms of Use and Privacy Policy.

Let’s Get Started

By signing up, you agree to our Terms of Use and Privacy Policy.

This website or its third-party tools use cookies, which are necessary to its functioning and required to achieve the purposes illustrated in the cookie policy. By closing this banner, scrolling this page, clicking a link or continuing to browse otherwise, you agree to our Privacy Policy

Loading . . .
Quiz
Question:

Answer:

Quiz Result
Total QuestionsCorrect AnswersWrong AnswersPercentage

Explore 1000+ varieties of Mock tests View more