EDUCBA

EDUCBA

MENUMENU
  • Free Tutorials
  • Free Courses
  • Certification Courses
  • 360+ Courses All in One Bundle
  • Login

PyTorch vs Keras

Home » Data Science » Data Science Tutorials » Head to Head Differences Tutorial » PyTorch vs Keras

PyTorch vs Keras - data

Difference Between PyTorch vs Keras

The PyTorch is a deep learning type framework that is low level based API that concentrate on array expressions. The PyTorch framework supports the python programming language and the framework is much faster and flexible than other python programming language supported framework. The Keras is other learning framework that is based on python programming language that uses the neural networks and execute on TensorFlow. The Keras framework more focused on research, development type applications and can be easily extends to add new features in the framework so that it can be used widely for the applications.

Head to Head Difference Between PyTorch vs Keras

Below are the top 7 differences between PyTorch vs Keras

Start Your Free Data Science Course

Hadoop, Data Science, Statistics & others

PyTorch vs Keras info

Key differences Between PyTorch vs Keras

Below are the key differences mentioned:

  1. One of the major difference between both the frameworks is size of the dataset in the framework. The Keras uses the small size dataset as the size of the network is small and simple in this framework the PyTorch framework contains the large size network that use the large size dataset in the framework. The use of the dataset is in the research and development for the application.
  2. The other difference both the frameworks is performance of the framework. The PyTorch framework has high performance and the processing speed is much more compared to other framework. The PyTorch framework is more suitable for the application that requires fat processing speed and high performance. The Keras framework uses for those applications which does not focused on performance and processing speed.
  3. The other key difference is the debugging capabilities of the framework. The PyTorch framework supports the debugging feature in its framework as the size of network is very large this feature is important for this framework. The Keras framework contains simple network that does not require debugging feature and the framework supports the applications that has simple architecture.
  4. The main difference between PyTorch framework and Keras framework is flexibility of the framework. The Keras is high-level type framework which bundles up the learning layers and the features provided by the framework is limited when it is compared to PyTorch framework. In PyTorch framework the custom layers can be added to provide the extensibility in the framework. The new features can be added in this framework and all functions can be properly used in PyTorch framework.
  5. The community support for the PyTorch is more when it is compared to Keras framework. The documentation for the PyTorch is more easy to read and understand compare to Keras framework. The Keras is more suitable for the beginners as the size of network is small and easy to understand in Keras framework. The code readability is easy and simple in Keras framework.
  6. One of the other important difference between Keras and PyTorch framework is support for cross platform and portability. The PyTorch framework does not supports the portability feature and the features is limited for PyTorch framework. The Keras is better option when there is need of portability as the framework supports the cross platform that means the Keras framework can be run on top of the TenserFlow framework.
  7. The abstraction feature is provided in Keras framework. It means he complex information and details are hidden for the user and the framework can be easily used for the beginners. The PyTorch is little complex and does not support this features in its framework. The complete information is required to know for the framework before its can be used for the application. The feature of customization is supported in PyTorch framework that means new custom layers can be added as per the user requirement in the framework.

PyToch vs Keras Comparison Table

Below are the primary comparison between PyTorch vs Keras:

Factors PyTorch Keras
API Level The PyTorch framework uses the low-level APIs that focused on array expressions. This framework is mostly used for academic research type applications. The Keras framework is capable of executing above TensorFlow and high-level APIs are used in this framework.
Speed The PyTorch framework is fast and also used for applications that needs high performance. The PyTorch framework is widely used compared to Keras framework because of processing speed of framework. The Keras framework is comparatively slower to PyTorch framework and other python supported framework. The performance is also less compared to other deep learning frameworks
Architecture The PyTorch uses the complex architecture in the framework which makes the framework difficult to use for the users. The readability is also not easy for the PyTorch framework when it is compared to Keras framework. The Keras framework uses simple architecture and contains easy to use components for the user. And the use of framework is easy for the user because of easy readability and concise features compared to PyTorch framework.
Debugging The PyTorch framework has better level of debugging capabilities when it is compared to other deep learning frameworks. The PyTorch framework is widely used as the network is complex that requires the debugging feature in the framework. In Keras framework the support of debugging is not there. As the network is very simple there is no need of debugging support for the framework.
Dataset The PyTorch contains large size of dataset. It is because the framework is capable of processing the dataset very fat and also gives the better performance when it is compared to Keras framework. The dataset used in the Keras framework is of small size. It is because of slow processing speed and low performance of the framework.
Popularity The PyTorch is less popular compared to Keras framework because of the complex architecture and large size dataset. From all available deep learning based framework the Keras framework is most popular compared to PyTorch framework. It is because of simple network and small size dataset.
Ease of use The PyTorch framework is used for those applications which requires complex architecture and that contains large size dataset. The Keras framework is used for the applications thatrequire simple architecture and the size of dataset is small.

Conclusion

The deep learning based frameworks i.e. PyTorch and Keras supports python programming language in their frameworks. Both the frameworks are widely used for the research and development applications and on the basis of user requirement the frameworks can be selected and used for the application.Conclusion

Recommended Article

This is a guide to PyTorch vs Keras. Here we discuss the introduction to PyTorch vs Keras, Key differences, factors with explanation. You can also go through our other related articles to learn more –

  1. Python Libraries For Data Science
  2. Deep Learning Libraries
  3. Deep Learning Frameworks
  4. Supervised Learning vs Deep Learning

All in One Data Science Bundle (360+ Courses, 50+ projects)

360+ Online Courses

50+ projects

1500+ Hours

Verifiable Certificates

Lifetime Access

Learn More

0 Shares
Share
Tweet
Share
Primary Sidebar
Machine Learning Tutorial
  • Pytorch
    • PyTorch Versions
    • Single Layer Perceptron
    • PyTorch vs Keras
    • torch.nn Module
  • Basic
    • Introduction To Machine Learning
    • What is Machine Learning?
    • Uses of Machine Learning
    • Applications of Machine Learning
    • Careers in Machine Learning
    • What is Machine Cycle?
    • Machine Learning Feature
    • Machine Learning Programming Languages
    • Machine Learning Tools
    • Machine Learning Models
    • Machine Learning Platform
    • Machine Learning Libraries
    • Machine Learning Life Cycle
    • Machine Learning System
    • Machine Learning Datasets
    • Types of Machine Learning
    • Machine Learning Methods
    • Machine Learning Software
    • Machine Learning Techniques
    • Machine Learning Feature Selection
    • Ensemble Methods in Machine Learning
    • Decision Making Techniques
    • Restricted Boltzmann Machine
    • Regularization Machine Learning
    • What is Regression?
    • What is Linear Regression?
    • What is Decision Tree?
    • What is Random Forest
  • Algorithms
    • Machine Learning Algorithms
    • Types of Machine Learning Algorithms
    • Bayes Theorem
    • AdaBoost Algorithm
    • Classification Algorithms
    • Clustering Algorithm
    • Gradient Boosting Algorithm
    • Mean Shift Algorithm
    • Hierarchical Clustering Algorithm
    • What is a Greedy Algorithm?
    • What is Genetic Algorithm?
    • Random Forest Algorithm
    • Nearest Neighbors Algorithm
    • Weak Law of Large Numbers
    • Ray Tracing Algorithm
    • SVM Algorithm
    • Naive Bayes Algorithm
    • Neural Network Algorithms
    • Boosting Algorithm
    • XGBoost Algorithm
    • Pattern Searching
    • Loss Functions in Machine Learning
    • Decision Tree in Machine Learning
    • Hyperparameter Machine Learning
    • Unsupervised Machine Learning
    • K- Means Clustering Algorithm
    • KNN Algorithm
    • Monty Hall Problem
  • Supervised
    • What is Supervised Learning
    • Supervised Machine Learning
    • Supervised Machine Learning Algorithms
    • Perceptron Learning Algorithm
    • Simple Linear Regression
    • Polynomial Regression
    • Multivariate Regression
    • Regression in Machine Learning
    • Hierarchical Clustering Analysis
    • Linear Regression Analysis
    • Support Vector Regression
    • Linear Regression Modeling
    • Multiple Linear Regression
    • Linear Algebra in Machine Learning
    • Statistics for Machine Learning
    • What is Regression Analysis?
    • Linear Regression Analysis
    • Clustering Methods
    • Backward Elimination
    • Ensemble Techniques
    • Bagging and Boosting
    • Linear Regression Modeling
    • What is Reinforcement Learning
  • Classification
    • Kernel Methods in Machine Learning
    • Clustering in Machine Learning
    • Machine Learning Architecture
    • Machine Learning C++ Library
    • Machine Learning Frameworks
    • Data Preprocessing in Machine Learning
    • Data Science Machine Learning
    • Classification of Neural Network
    • Neural Network Machine Learning
    • What is Convolutional Neural Network?
    • Single Layer Neural Network
    • Kernel Methods
    • Forward and Backward Chaining
    • Forward Chaining
    • Backward Chaining
  • Deep Learning
    • What Is Deep learning
    • Deep Learning
    • Application of Deep Learning
    • Careers in Deep Learnings
    • Deep Learning Frameworks
    • Deep Learning Model
    • Deep Learning Algorithms
    • Deep Learning Technique
    • Deep Learning Networks
    • Deep Learning Libraries
    • Deep Learning Toolbox
    • Types of Neural Networks
    • Convolutional Neural Networks
    • Create Decision Tree
    • Deep Learning for NLP
    • Caffe Deep Learning
    • Deep Learning with TensorFlow
  • RPA
    • What is RPA
    • What is Robotics?
    • Benefits of RPA
    • RPA Applications
    • Types of Robots
    • RPA Tools
    • Line Follower Robot
    • What is Blue Prism?
    • RPA vs BPM
  • UiPath
    • What is UiPath
    • UiPath Careers
    • UiPath Architecture
    • UiPath Orchestrator
    • Uipath Reframework
    • UiPath Studio
  • Interview Questions
    • Machine Learning Interview Questions
    • Deep Learning Interview Questions And Answer
    • Machine Learning Cheat Sheet

Related Courses

Machine Learning Training

Deep Learning Training

Artificial Intelligence Training

Footer
About Us
  • Blog
  • Who is EDUCBA?
  • Sign Up
  • Corporate Training
  • Certificate from Top Institutions
  • Contact Us
  • Verifiable Certificate
  • Reviews
  • Terms and Conditions
  • Privacy Policy
  •  
Apps
  • iPhone & iPad
  • Android
Resources
  • Free Courses
  • Database Management
  • Machine Learning
  • All Tutorials
Certification Courses
  • All Courses
  • Data Science Course - All in One Bundle
  • Machine Learning Course
  • Hadoop Certification Training
  • Cloud Computing Training Course
  • R Programming Course
  • AWS Training Course
  • SAS Training Course

© 2020 - EDUCBA. ALL RIGHTS RESERVED. THE CERTIFICATION NAMES ARE THE TRADEMARKS OF THEIR RESPECTIVE OWNERS.

EDUCBA
Free Data Science Course

Hadoop, Data Science, Statistics & others

*Please provide your correct email id. Login details for this Free course will be emailed to you
Book Your One Instructor : One Learner Free Class

Let’s Get Started

This website or its third-party tools use cookies, which are necessary to its functioning and required to achieve the purposes illustrated in the cookie policy. By closing this banner, scrolling this page, clicking a link or continuing to browse otherwise, you agree to our Privacy Policy

EDUCBA

*Please provide your correct email id. Login details for this Free course will be emailed to you
EDUCBA Login

Forgot Password?

EDUCBA
Free Data Science Course

Hadoop, Data Science, Statistics & others

*Please provide your correct email id. Login details for this Free course will be emailed to you

Special Offer - Online Data Science Course Learn More