EDUCBA

EDUCBA

MENUMENU
  • Free Tutorials
  • Free Courses
  • Certification Courses
  • 360+ Courses All in One Bundle
  • Login

Python Libraries For Data Science

By Priya PedamkarPriya Pedamkar

Home » Data Science » Data Science Tutorials » Data Science Tutorial for Beginners » Python Libraries For Data Science

Python Libraries For Data Science

Overview of Python Libraries for Data Science

Various libraries incorporated pythons, such as TensorFlow, Theano, PyTorch, ApacheSpark, OpenCV, NetworkX, Shogun, Matplotlib, etc., leveraging data mining operations over data through various machine learning and deep learning algorithm. To facilitate the derivation of the best possible insights from data and facilitate the right decision-making based on statistical and visual insights, finally derived are termed as Python Libraries for Data Science.

Python Data Science Libraries

Based on the operations, we will divide python data science libraries into the following areas.

Start Your Free Data Science Course

Hadoop, Data Science, Statistics & others

Python Data Science Libraries

1. General Libraries

NumPy: NumPy stands for Numerical Python. It is one of the fundamental libraries for scientific and mathematical computations. It helps us with efficient N-dimensional array operations, integrating C/C++ and Fortran codes, complex mathematical transformations involving linear algebra, Fourier transform, etc.

Pandas: It is the most popular library for reading, manipulating and preparing data. Pandas provide highly efficient, easy to use data structures that help manipulate data between in-memory and external data formats like CSV, JSON, Microsoft Excel, SQL, etc.

Key features of this library are:

  • Comes with fast and efficient DataFrame object
  • High-performance merging and intelligent indexing of datasets
  • Low latency implementation is written in Cython and C etc.

SciPy: SciPy is another popular open-source library for mathematical and statistical operations. The core data structure of scipy is numpy arrays. It helps data scientists and developers with linear algebra, domain transformations, statistical analysis, etc.

2. Data Visualization

Matplotlib: It is a 2D plotting library for visualization inspired by MATLAB. Matplotlib provides high-quality two-dimensional figures like a bar chart, distribution plots, histograms, scatterplot, etc., with few code lines. Like MATLAB, it also gives users the flexibility of choosing low-level functionalities like line styles, font properties, axes properties, etc., via an object-oriented interface or a set of functions.

Popular Course in this category
Data Science with Python Training (21 Courses, 12+ Projects)21 Online Courses | 12 Hands-on Projects | 89+ Hours | Verifiable Certificate of Completion | Lifetime Access
4.8 (9,022 ratings)
Course Price

View Course

Related Courses
Data Scientist Training (76 Courses, 60+ Projects)All in One Data Science Bundle (360+ Courses, 50+ projects)

Seaborn: Seaborn is basically a high-level API built on top of Matplotlib. It comes with a visual reacher and informative statistical graphics like heatmap, count plot, violinplot, etc.

Plotly: Plotly is another popular open-source python graphing library for high quality, interactive visualization. In addition to 2D graphs, it also supports 3D plotting. Plotly is used extensively for in-browser visualization of data.

3. Machine Learning and NLP

ScikitLearn: ScikitLearn is probably one of the most widely-used Python libraries for machine learning and predictive analysis. It offers an extensive collection of efficient algorithms for classification, regression, clustering, model tuning, data preprocessing and dimensionality reduction tasks. It is built on top of NumPy, SciPy and Matplotlib; hence it is easy to use, open-sourced and reusable for various contexts.

LightGBM: In the later part of your data science learning, you will come across tree-based learning algorithms and ensembles. One of the most important methodologies in today’s machine learning is boosting. LightGBM is a popular open-source gradient boosting framework by Microsoft.

The key features of lightgbm are

  • Parallel and GPU enabled execution.
  • Fastness and better accuracy
  • The capability of handling large scale data sets and supports distributed computing

Surprise: The recommendation system is an important area of interest for modern AI-based applications. State art Recommendation system enables businesses to provide highly personalized offerings to their clients. The surprise is a useful open-source Python library to build recommendation systems. It provides tools to evaluate, analyze and compare the performance of the algorithm.

NLTK: NLTK stands for Natural Language Toolkit. It is an open-source library to work with the human language data sets. It is handy for problems like text analytics, sentiment analysis, analyzing linguistic structure, etc.

4. Deep Learning

TensorFlow: TensorFlow is an open-source framework by Google to end machine learning and deep learning solutions. It gives low-level controls to the users to design and train highly scalable and complex neural networks. Tensorflow is available for both desktop and mobile and supports an extensive number of programming languages through wrappers.

Keras: Keras is an open-source high level deep learning library. It gives the flexibility of using either TensorFlow or theano (another low-level python library like TensorFlow) as a backend. Keras provides a simple high-level API for developing deep learning models.

It is suitable for quick prototyping and developing neural network models for industrial use. The primary usage of Keras is in classification, text generation, and summarization, tagging, and translation, speech recognition, etc.

5. Miscellaneous

OpenCV: OpenCV is a popular python library for computer vision problems (Task involving the image or video data). It is an efficient framework with cross-platform support and ideal for real-time applications.

Dask: If you have low computation power or do not have access to large clusters, Dask is a perfect choice for scalable computation. Dask provides low-level APIs to build custom systems for in-house applications. While working with a huge scale dataset in your local box, you can opt for Dask instead of Pandas.

Conclusion

There is a rich set of python libraries available for various data-driven operations in python. This article discussed the most popular and widely used python libraries across the data science community. Based on the problem statement and Organizational practices, appropriate python libraries are chosen in practice.

Recommended Articles

This has been a guide to Python Libraries For Data Science. Here we have discussed the overview and different libraries of python for data science. You can also go through our other suggested articles to learn more –

  1. Advantages of Python
  2. Python Alternatives
  3. Python String Functions
  4. Matplotlib In Python
  5. Guide to Python String Join

Data Science with Python Training (21 Courses, 12+ Projects)

21 Online Courses

12 Hands-on Projects

89+ Hours

Verifiable Certificate of Completion

Lifetime Access

Learn More

0 Shares
Share
Tweet
Share
Primary Sidebar
Data Science Tutorial
  • Basics
    • Introduction To Data Science
    • What is Data Science
    • Data Science Career
    • Data Science Skills
    • Data Science Applications
    • Data Science Algorithms
    • Data Science Languages
    • Data Science Lifecycle
    • Data Science Platform
    • Data Science Techniques
    • Data Science Tools
    • Best Data Science Programs
    • Data Science its Growing Importance
    • Data Science Machine Learning
    • Python Libraries For Data Science
    • Data Science Interview Questions

Related Courses

Data Scientist Certification Course

Data Science with Python Course

Data Science Certification Course

Footer
About Us
  • Blog
  • Who is EDUCBA?
  • Sign Up
  • Corporate Training
  • Certificate from Top Institutions
  • Contact Us
  • Verifiable Certificate
  • Reviews
  • Terms and Conditions
  • Privacy Policy
  •  
Apps
  • iPhone & iPad
  • Android
Resources
  • Free Courses
  • Database Management
  • Machine Learning
  • All Tutorials
Certification Courses
  • All Courses
  • Data Science Course - All in One Bundle
  • Machine Learning Course
  • Hadoop Certification Training
  • Cloud Computing Training Course
  • R Programming Course
  • AWS Training Course
  • SAS Training Course

© 2020 - EDUCBA. ALL RIGHTS RESERVED. THE CERTIFICATION NAMES ARE THE TRADEMARKS OF THEIR RESPECTIVE OWNERS.

EDUCBA Login

Forgot Password?

EDUCBA
Free Data Science Course

Hadoop, Data Science, Statistics & others

*Please provide your correct email id. Login details for this Free course will be emailed to you
Book Your One Instructor : One Learner Free Class

Let’s Get Started

This website or its third-party tools use cookies, which are necessary to its functioning and required to achieve the purposes illustrated in the cookie policy. By closing this banner, scrolling this page, clicking a link or continuing to browse otherwise, you agree to our Privacy Policy

EDUCBA

*Please provide your correct email id. Login details for this Free course will be emailed to you
EDUCBA
Free Data Science Course

Hadoop, Data Science, Statistics & others

*Please provide your correct email id. Login details for this Free course will be emailed to you

Special Offer - Data Science with Python Training (21 Courses, 12+ Projects) Learn More