EDUCBA

EDUCBA

MENUMENU
  • Free Tutorials
  • Free Courses
  • Certification Courses
  • 600+ Courses All in One Bundle
  • Login
Home Software Development Software Development Tutorials PyTorch Tutorial PyTorch VAE
Secondary Sidebar
PyTorch Tutorial
  • PyTorch
    • PyTorch Image Classification
    • PyTorch Random
    • PyTorch Variable
    • PyTorch Activation Function
    • Python Formatted String
    • PyTorch GPU
    • PyTorch CUDA
    • PyTorch DataLoader
    • PyTorch LSTM
    • PyTorch Pad
    • PyTorch OpenCL
    • PyTorch Lightning
    • PyTorch SoftMax
    • PyTorch Flatten
    • PyTorch gan
    • PyTorch max
    • PyTorch pip
    • PyTorch Parameter
    • PyTorch Load Model
    • PyTorch Distributed
    • PyTorch BERT
    • PyTorch interpolate
    • PyTorch JIT
    • PyTorch expand
    • PyTorch AMD
    • PyTorch GRU
    • PyTorch rnn
    • PyTorch permute
    • PyTorch argmax
    • PyTorch SGD
    • PyTorch nn
    • PyTorch One Hot Encoding
    • PyTorch Tensors
    • What is PyTorch?
    • PyTorch MSELoss()
    • PyTorch NLLLOSS
    • PyTorch MaxPool2d
    • PyTorch Pretrained Models
    • PyTorch Squeeze
    • PyTorch Reinforcement Learning
    • PyTorch zero_grad
    • PyTorch norm
    • PyTorch VAE
    • PyTorch Early Stopping
    • PyTorch requires_grad
    • PyTorch MNIST
    • PyTorch Conv2d
    • Dataset Pytorch
    • PyTorch tanh
    • PyTorch bmm
    • PyTorch profiler
    • PyTorch unsqueeze
    • PyTorch adam
    • PyTorch backward
    • PyTorch concatenate
    • PyTorch Embedding
    • PyTorch Tensor to NumPy
    • PyTorch Normalize
    • PyTorch ReLU
    • PyTorch Autograd
    • PyTorch Transpose
    • PyTorch Object Detection
    • PyTorch Autoencoder
    • PyTorch Loss
    • PyTorch repeat
    • PyTorch gather
    • PyTorch sequential
    • PyTorch U-NET
    • PyTorch Sigmoid
    • PyTorch Neural Network
    • PyTorch Quantization
    • PyTorch Ignite
    • PyTorch Versions
    • PyTorch TensorBoard
    • PyTorch Dropout
    • PyTorch Model
    • PyTorch optimizer
    • PyTorch ResNet
    • PyTorch CNN
    • PyTorch Detach
    • Single Layer Perceptron
    • PyTorch vs Keras
    • torch.nn Module

PyTorch VAE

PyTorch VAE

Introduction to PyTorch VAE

In PyTorch, we have different types of functionality for the user, in which that vae is one of the functions that we can implement in deep learning. The vae means variational autoencoder, by using vae we can implement two different neural networks, encoder, and decoder as per our requirement. Just imagine we have a large set of the dataset and inside that each and every image consists of hundreds of pixels that mean it has hundreds of dimensions. So in deep learning sometimes we need to reduce the dimension of an image so at that time we can use vae to increase the high dimensional data.

What is PyTorch vae?

Envision that we have a huge, high-dimensional dataset. For instance, envision we have a dataset comprising thousands of pictures. Each picture consists of many pixels, so every information point has many aspects. The complex speculation expresses that genuine high-dimensional information really comprises low-dimensional information that is installed in the high-dimensional space. This implies that, while the genuine information itself may have many aspects, the hidden design of the information can be adequately depicted utilizing a couple of aspects.

This is the inspiration driving dimensionality decrease methods, which attempt to take high-dimensional information and undertake it onto a lower-dimensional surface. For people who picture most things in 2D (or at times 3D), this typically implies extending the information onto a 2D surface. Instances of dimensionality decrease methods incorporate head part investigation (PCA) and t-SNE.

All in One Software Development Bundle(600+ Courses, 50+ projects)
Python TutorialC SharpJavaJavaScript
C Plus PlusSoftware TestingSQLKali Linux
Price
View Courses
600+ Online Courses | 50+ projects | 3000+ Hours | Verifiable Certificates | Lifetime Access
4.6 (86,560 ratings)

Neural organizations are regularly utilized in the regulated learning setting, where the information comprises sets (A, B) furthermore the organization learns a capacity f: A→B. This setting applies to both relapses (where B is a ceaseless capacity of A) furthermore characterization (where B is a discrete mark for A). Notwithstanding, neural organizations have shown extensive power in the solo learning setting, where information simply consists of focuses A. There are no “objectives” or “marks” B. All things considered, the objective is to learn and comprehend the construction of the information. On account of dimensionality decrease, the objective is to track down a low-dimensional portrayal of the information.

Start Your Free Software Development Course

Web development, programming languages, Software testing & others

PyTorch vae

The standard autoencoder can have an issue, by the way, that the dormant space can be sporadic. This implies that nearby focuses in the dormant space can create unique and inane examples over noticeable units.

One answer for this issue is the presentation of the Variational Autoencoder. As the autoencoder, it is made out of two neural organization designs, encoder, and decoder.

Be that as it may, there is an alteration of the encoding-unraveling process. We encode the contribution as a circulation over the dormant space, rather than thinking about it as a solitary point. This encoded conveyance is picked to be ordinary so that the encoder can be prepared to return the mean network and the covariance framework.

In the subsequent advance, we test a point from that encoded circulation.

After, we can decipher the inspected point and work out the remaking blunder

We backpropagate the recreation mistake through the organization. Since the testing system is a discrete cycle, so it’s not persistent, we want to apply a reparameterization stunt to make the backpropagation work.

In vae we also need to consider the loss function as follows.

The loss for the VAE comprises of two terms:

The initial term is the reconstruction term, which is contrasting the information and comparing reproduction.
An extra term is the regularization term, which is likewise called the Kullback-Leibler difference between the dispersion returned by the encoder and the standard typical appropriation. This term goes about as a regularizer in the dormant space. This makes the circulations returned by the encoder near-standard typical dissemination.

Examples

Now let’s see different examples of vae for better understanding as follows.

For implementation purposes, we need to follow the different steps as follows.

Step 1: First we need to import all the required packages and modules. We will utilize the torch.optim and the torch.nn module from the light bundle and datasets and changes from torchvision bundle.

Step 2: After that, we need to import the dataset. we need to load the required dataset into the loader with the help of the DataLoader module. We can use the downloaded dataset for image transformation. Utilizing the DataLoader module, the tensors are stacked and fit to be utilized.

Step 3: Now we need to create the autoencoder class and that includes the different nodes and layers as per the problem statement.

Step 4: Finally, we need to initialize the model and create output.

import torch
import torchvision
from torch import nn
from torch.utils.data import DataLoader
from torchvision import transforms
from torchvision.datasets import MNIST
img_tran = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize([0.6], [0.6])
])
datainfo = MNIST('./data', transform=img_tran, download=True)
class autoencoder_l(nn.Module):
def __init__(self):
super().__init__()
self.encoder_fun = nn.Sequential(
nn.Linear(24 * 24, 124),
nn.ReLU(True),
nn.Linear(64, 32),
nn.ReLU(True),
nn.Linear(32, 10),
nn.ReLU(True),
nn.Linear(10, 2))
self.decoder_fun = nn.Sequential(
nn.Linear(10, 2),
nn.ReLU(True),
nn.Linear(32, 10),
nn.ReLU(True),
nn.Linear(64, 32),
nn.ReLU(True),
nn.Linear(124, 24 * 24),
nn.Tanh())
def forward(self, A):
lat = self.encoder_fun(A)
A = self.decoder_fun(lat)
return A, lat
n_ep = 8
b_s = 124
l_r = 2e-2
dataloader = DataLoader(datainfo, b_s=b_s, shuffle=True)
model = autoencoder_l()
model.cuda()
crit = nn.MSELoss()
opti = torch.optim.AdamW(
model.parameters(), lr=l_r)
for ep in range(n_ep):
for info in dataloader:
image, label_info = info
image = imahe.view(image.size(0), -1).cuda()
result, lat = model(image)
loss = crit(result, image)
loss.backward()
opti.step()
opti.zero_grad()
print(Result, 'epoch_n [{epoch + 1},{n_ep}], loss of info:{loss.info.item()}')

Explanation

In an example first, we import all required packages after that we download the dataset and we extract them. Here we use MINSET dataset for image extraction. After that, we write the code for the training dataset as shown. The final result of the above program we illustrated by using the following screenshot as follows.

1

Conclusion

We hope from this article you learn more about the PyTorch vae. From the above article, we have learned the basic concept as well as the syntax of the PyTorch vae and we also see the different examples of the PyTorch vae. From this article, we learned how and when we use the PyTorch vae.

Recommended Articles

This is a guide to PyTorch VAE. Here we discuss the definition, What is PyTorch vae, examples with code implementation. You may also have a look at the following articles to learn more –

  1. Dataset Pytorch
  2. PyTorch Conv2d
  3. Mxnet vs Pytorch
  4. What is PyTorch?
Popular Course in this category
Machine Learning Training (20 Courses, 29+ Projects)
  19 Online Courses |  29 Hands-on Projects |  178+ Hours |  Verifiable Certificate of Completion
4.7
Price

View Course
0 Shares
Share
Tweet
Share
Primary Sidebar
Footer
About Us
  • Blog
  • Who is EDUCBA?
  • Sign Up
  • Live Classes
  • Corporate Training
  • Certificate from Top Institutions
  • Contact Us
  • Verifiable Certificate
  • Reviews
  • Terms and Conditions
  • Privacy Policy
  •  
Apps
  • iPhone & iPad
  • Android
Resources
  • Free Courses
  • Java Tutorials
  • Python Tutorials
  • All Tutorials
Certification Courses
  • All Courses
  • Software Development Course - All in One Bundle
  • Become a Python Developer
  • Java Course
  • Become a Selenium Automation Tester
  • Become an IoT Developer
  • ASP.NET Course
  • VB.NET Course
  • PHP Course

ISO 10004:2018 & ISO 9001:2015 Certified

© 2022 - EDUCBA. ALL RIGHTS RESERVED. THE CERTIFICATION NAMES ARE THE TRADEMARKS OF THEIR RESPECTIVE OWNERS.

EDUCBA
Free Software Development Course

C# Programming, Conditional Constructs, Loops, Arrays, OOPS Concept

*Please provide your correct email id. Login details for this Free course will be emailed to you

By signing up, you agree to our Terms of Use and Privacy Policy.

EDUCBA Login

Forgot Password?

By signing up, you agree to our Terms of Use and Privacy Policy.

EDUCBA
Free Software Development Course

Web development, programming languages, Software testing & others

*Please provide your correct email id. Login details for this Free course will be emailed to you

By signing up, you agree to our Terms of Use and Privacy Policy.

EDUCBA

*Please provide your correct email id. Login details for this Free course will be emailed to you

By signing up, you agree to our Terms of Use and Privacy Policy.

Let’s Get Started

By signing up, you agree to our Terms of Use and Privacy Policy.

This website or its third-party tools use cookies, which are necessary to its functioning and required to achieve the purposes illustrated in the cookie policy. By closing this banner, scrolling this page, clicking a link or continuing to browse otherwise, you agree to our Privacy Policy

Loading . . .
Quiz
Question:

Answer:

Quiz Result
Total QuestionsCorrect AnswersWrong AnswersPercentage

Explore 1000+ varieties of Mock tests View more