EDUCBA

EDUCBA

MENUMENU
  • Free Tutorials
  • Free Courses
  • Certification Courses
  • 600+ Courses All in One Bundle
  • Login
Home Software Development Software Development Tutorials PyTorch Tutorial PyTorch repeat
Secondary Sidebar
PyTorch Tutorial
  • PyTorch
    • PyTorch Image Classification
    • PyTorch Random
    • PyTorch Variable
    • PyTorch Activation Function
    • Python Formatted String
    • PyTorch GPU
    • PyTorch CUDA
    • PyTorch DataLoader
    • PyTorch LSTM
    • PyTorch Pad
    • PyTorch OpenCL
    • PyTorch Lightning
    • PyTorch SoftMax
    • PyTorch Flatten
    • PyTorch gan
    • PyTorch max
    • PyTorch pip
    • PyTorch Parameter
    • PyTorch Load Model
    • PyTorch Distributed
    • PyTorch BERT
    • PyTorch interpolate
    • PyTorch JIT
    • PyTorch expand
    • PyTorch AMD
    • PyTorch GRU
    • PyTorch rnn
    • PyTorch permute
    • PyTorch argmax
    • PyTorch SGD
    • PyTorch nn
    • PyTorch One Hot Encoding
    • PyTorch Tensors
    • What is PyTorch?
    • PyTorch MSELoss()
    • PyTorch NLLLOSS
    • PyTorch MaxPool2d
    • PyTorch Pretrained Models
    • PyTorch Squeeze
    • PyTorch Reinforcement Learning
    • PyTorch zero_grad
    • PyTorch norm
    • PyTorch VAE
    • PyTorch Early Stopping
    • PyTorch requires_grad
    • PyTorch MNIST
    • PyTorch Conv2d
    • Dataset Pytorch
    • PyTorch tanh
    • PyTorch bmm
    • PyTorch profiler
    • PyTorch unsqueeze
    • PyTorch adam
    • PyTorch backward
    • PyTorch concatenate
    • PyTorch Embedding
    • PyTorch Tensor to NumPy
    • PyTorch Normalize
    • PyTorch ReLU
    • PyTorch Autograd
    • PyTorch Transpose
    • PyTorch Object Detection
    • PyTorch Autoencoder
    • PyTorch Loss
    • PyTorch repeat
    • PyTorch gather
    • PyTorch sequential
    • PyTorch U-NET
    • PyTorch Sigmoid
    • PyTorch Neural Network
    • PyTorch Quantization
    • PyTorch Ignite
    • PyTorch Versions
    • PyTorch TensorBoard
    • PyTorch Dropout
    • PyTorch Model
    • PyTorch optimizer
    • PyTorch ResNet
    • PyTorch CNN
    • PyTorch Detach
    • Single Layer Perceptron
    • PyTorch vs Keras
    • torch.nn Module

PyTorch repeat

PyTorch repeat

Introduction to PyTorch repeat

In deep learning, we need to repeat the tensor along with the required dimensions at that time we can use PyTorch repeat. tensor. repeat should suit our necessities yet we want to embed a unitary aspect first. For this we could utilize either tensor. reshape or tensor. unsqueeze. Since unsqueeze is explicitly characterized to embed a unitary aspect we will utilize that. In deep learning, it plays a more important role because sometimes we need to change the dimension of the tensor in the training dataset so at that time we can use the repeat method to change the dimension of the tensor and utilize it whenever we require it.

What is PyTorch repeat?

tensor. repeat should suit your necessities yet you really want to embed a unitary aspect first. For this, we could utilize either tensor. reshape or tensor. unsqueeze. Since unsqueeze is explicitly characterized to embed a unitary aspect we will utilize that.

Start Your Free Software Development Course

Web development, programming languages, Software testing & others

Fundamentally, PyTorch gives the reshape usefulness to the client, in profound learning it is a significant part. The Squeeze in PyTorch is used for controlling a tensor by dropping all of its components of wellsprings of data having size 1. Presently in the under code scrap, we are using the devastating limit of PyTorch. As it might be seen, the tensor whose wellsprings of information are having the part of size 1 is dropped. PyTorch unsqueeze work is used to make one more tensor as yield by adding one more component of size one at the best position. For instance, here we take a tensor of 2x2x2 and use PyTorch level ability to get a tensor of a singular estimation having size 8.

First, let’s try to understand what deep learning is. Deep Learning is a subfield of AI where concerned calculations are enlivened by the construction and capacity of the mind called Artificial Neural Networks. Profound learning has acquired a lot of significance through administered taking in or gaining from marked information and calculations. Every calculation in profound learning goes through the same interaction. It incorporates the progression of nonlinear change of information and utilizations to make a factual model as yield.
AI process is characterized utilizing the following advances:

1. Recognizes important informational indexes and sets them up for examination.
2. Picks the sort of calculation to utilize.
3. Fabricates a logical model dependent on the calculation utilized.
4. PyTorch – Universal Workflow of Machine Learning
5. Trains the model on test informational indexes, reexamining it on a case-by-case basis.
6. Runs the model to create test scores.

So we need to use different functions such as reshape (), shape, etc, to achieve the above-mentioned point. Pytorch also provides one more function that we can utilize with the reshape() function that is the repeat function. It avoids the duplication of tensors that means we can use existing tensors with specified dimensions to get the predicted outcome as well as it also provides the support to reduce the complexity and we can implement tensors in an efficient way in deep learning.

How to repeat new dimension in PyTorch?

Now let’s see how we can create a new dimension with a repeat as follows.

Syntax

Specified torch.repeat(specified dimension)

Explanation

In the above syntax, we use repeat function as shown, here specified torch means the actual variable name of tensor and specified dimension means the required dimension that we need to change.

The repeat function has different parameters as follows.

  • Input: It is used to indicate the input tensor.
  • repeat: This is a function, used to repeat the shape of the tensor as per our requirement.
  • Dimension: This is an optional parameter of the repeat function, if we can’t provide the dimension at that time it takes the default dimension.

PyTorch repeat Examples

Now let’s see a different example of Pytorch repeat for better understanding as follows.

First, we need to create the tensor to implement the repeat by using the following code as follows.

import torch
x = torch.randn(5, 2, 220, 220)
y = x.repeat(3, 2, 1, 1)
print(y.shape)

Explanation

In the above example, we try to implement the repeat function with shape as shown, in this example first we created a tensor by using a random function. After that we use repeat with a new specified dimension as shown, finally, we print the result. The final result of the above program we illustrated by using the following screenshot as follows.

2

Now let’s see another example of repeat () as follows.

import torch
x = torch.tensor([[5, 2, 4], [6, 2, 3]])
print(x)

Explanation

In the above example first, we need to import the torch package, after that, we created a tensor as shown. The final result of the above program we illustrated by using the following screenshot as follows.

3

After successful creation of the tensor, we use the cat function to repeat the tensor, here we repeat the tensor 4 times as shown in the following code as follows.

y = torch.cat(4*[x])
print(y)

Explanation

The final result of the above program we illustrated by using the following screenshot as follows.

3-1

Now we use the repeat function as shown in the below code as follows.

z = y.repeat(2, 4)
print(z)

Explanation

The final result of the above program we illustrated by using the following screenshot as follows.

4

Now let’s see one more example of repeat with size function as follows.

import torch
A = torch.tensor([2, 3, 5])
A.repeat(3, 5)
B =A.repeat(3, 1, 2).size()
print(B)

Explanation

In the above example first, we need to import the torch as shown, after that we created a tensor. In this example, we use repeat () with the size function as shown. The final output of the above program we illustrated by using the following screenshot as follows.

4-1

One important thing about the repeat () function is that it is totally different from the nump. repeat but at the same time is more similar to NumPy.tile.

So in this way we can implement the PyTorch repeat, moving towards deep learning if we need to speed up the code or suppose we need to perform an arithmetic operation at that time we can use the repeat function in our model as per requirement.

Conclusion

We hope from this article you learn more about the PyTorch repeat. From the above article, we have taken in the essential idea of the PyTorch repeat and we also see the representation and example of the PyTorch repeat. From this article, we learned how and when we repeat PyTorch.

Recommended Articles

This is a guide to PyTorch repeat. Here we discuss the definition, What is PyTorch repeat, How to repeat new dimension in PyTorch, Examples. You may also have a look at the following articles to learn more –

  1. PyTorch Versions
  2. What is PyTorch?
  3. torch.nn Module
  4. TypeScript while loop
Popular Course in this category
Machine Learning Training (20 Courses, 29+ Projects)
  19 Online Courses |  29 Hands-on Projects |  178+ Hours |  Verifiable Certificate of Completion
4.7
Price

View Course
Primary Sidebar
Footer
About Us
  • Blog
  • Who is EDUCBA?
  • Sign Up
  • Live Classes
  • Corporate Training
  • Certificate from Top Institutions
  • Contact Us
  • Verifiable Certificate
  • Reviews
  • Terms and Conditions
  • Privacy Policy
  •  
Apps
  • iPhone & iPad
  • Android
Resources
  • Free Courses
  • Java Tutorials
  • Python Tutorials
  • All Tutorials
Certification Courses
  • All Courses
  • Software Development Course - All in One Bundle
  • Become a Python Developer
  • Java Course
  • Become a Selenium Automation Tester
  • Become an IoT Developer
  • ASP.NET Course
  • VB.NET Course
  • PHP Course

ISO 10004:2018 & ISO 9001:2015 Certified

© 2023 - EDUCBA. ALL RIGHTS RESERVED. THE CERTIFICATION NAMES ARE THE TRADEMARKS OF THEIR RESPECTIVE OWNERS.

EDUCBA
Free Software Development Course

Web development, programming languages, Software testing & others

By continuing above step, you agree to our Terms of Use and Privacy Policy.
*Please provide your correct email id. Login details for this Free course will be emailed to you
EDUCBA

*Please provide your correct email id. Login details for this Free course will be emailed to you

Let’s Get Started

By signing up, you agree to our Terms of Use and Privacy Policy.

EDUCBA

*Please provide your correct email id. Login details for this Free course will be emailed to you
EDUCBA

*Please provide your correct email id. Login details for this Free course will be emailed to you
EDUCBA Login

Forgot Password?

By signing up, you agree to our Terms of Use and Privacy Policy.

This website or its third-party tools use cookies, which are necessary to its functioning and required to achieve the purposes illustrated in the cookie policy. By closing this banner, scrolling this page, clicking a link or continuing to browse otherwise, you agree to our Privacy Policy

Loading . . .
Quiz
Question:

Answer:

Quiz Result
Total QuestionsCorrect AnswersWrong AnswersPercentage

Explore 1000+ varieties of Mock tests View more