EDUCBA

EDUCBA

MENUMENU
  • Free Tutorials
  • Free Courses
  • Certification Courses
  • 600+ Courses All in One Bundle
  • Login
Home Software Development Software Development Tutorials PyTorch Tutorial PyTorch Quantization
Secondary Sidebar
PyTorch Tutorial
  • PyTorch
    • PyTorch Image Classification
    • PyTorch Random
    • PyTorch Variable
    • PyTorch Activation Function
    • Python Formatted String
    • PyTorch GPU
    • PyTorch CUDA
    • PyTorch DataLoader
    • PyTorch LSTM
    • PyTorch Pad
    • PyTorch OpenCL
    • PyTorch Lightning
    • PyTorch SoftMax
    • PyTorch Flatten
    • PyTorch gan
    • PyTorch max
    • PyTorch pip
    • PyTorch Parameter
    • PyTorch Load Model
    • PyTorch Distributed
    • PyTorch BERT
    • PyTorch interpolate
    • PyTorch JIT
    • PyTorch expand
    • PyTorch AMD
    • PyTorch GRU
    • PyTorch rnn
    • PyTorch permute
    • PyTorch argmax
    • PyTorch SGD
    • PyTorch nn
    • PyTorch One Hot Encoding
    • PyTorch Tensors
    • What is PyTorch?
    • PyTorch MSELoss()
    • PyTorch NLLLOSS
    • PyTorch MaxPool2d
    • PyTorch Pretrained Models
    • PyTorch Squeeze
    • PyTorch Reinforcement Learning
    • PyTorch zero_grad
    • PyTorch norm
    • PyTorch VAE
    • PyTorch Early Stopping
    • PyTorch requires_grad
    • PyTorch MNIST
    • PyTorch Conv2d
    • Dataset Pytorch
    • PyTorch tanh
    • PyTorch bmm
    • PyTorch profiler
    • PyTorch unsqueeze
    • PyTorch adam
    • PyTorch backward
    • PyTorch concatenate
    • PyTorch Embedding
    • PyTorch Tensor to NumPy
    • PyTorch Normalize
    • PyTorch ReLU
    • PyTorch Autograd
    • PyTorch Transpose
    • PyTorch Object Detection
    • PyTorch Autoencoder
    • PyTorch Loss
    • PyTorch repeat
    • PyTorch gather
    • PyTorch sequential
    • PyTorch U-NET
    • PyTorch Sigmoid
    • PyTorch Neural Network
    • PyTorch Quantization
    • PyTorch Ignite
    • PyTorch Versions
    • PyTorch TensorBoard
    • PyTorch Dropout
    • PyTorch Model
    • PyTorch optimizer
    • PyTorch ResNet
    • PyTorch CNN
    • PyTorch Detach
    • Single Layer Perceptron
    • PyTorch vs Keras
    • torch.nn Module

PyTorch Quantization

PyTorch Quantization

Definition of PyTorch Quantization

PyTorch is a framework to implement deep learning, so sometimes we need to compute the different points by using lower bit widths. At that time we can use PyTorch quantization. Basically, quantization is a technique that is used to compute the tensors by using bit width rather than the floating point. In another word, we can say that by using the quantized model we can perform the different operations on input tensors with integer values rather than floating-point values. The main thing about quantization is that we can perform some complex model or more compact model representation as per our requirement.

What is PyTorch Quantization?

A quantized model executes a few or every one of the procedures on tensors with whole numbers rather than drifting point esteems. This takes into account a smaller model portrayal and the utilization of elite execution vectorized procedure on numerous equipment stages. PyTorch upholds INT8 quantization contrasted with normal FP32 models taking into account a 4x decrease in the model size and a 4x decrease in-memory data transmission necessities. Equipment support for INT8 calculations is commonly 2 to multiple times quicker in contrast with the FP32 register. Quantization is basically a method to accelerate surmising and just the forward pass is upheld for quantized administrators.

At a lower level, PyTorch gives a method for addressing quantized tensors and performing activities with them. They can be utilized to straightforwardly build models that play out all or part of the calculation with lower accuracy. More significant level APIs are given that fuse run-of-the-mill work processes of changing over the FP32 model to bring down accuracy with negligible exactness misfortune.

How quantization works?

Before we can see how blended accuracy prepares functions, we first need to audit a smidgen about mathematical sorts.

Start Your Free Software Development Course

Web development, programming languages, Software testing & others

In PC designing, decimal numbers like 1.0151 or 566132.8 are generally addressed as drifting point numbers. Since we can have boundlessly exact numbers (think π), yet restricted space in which to store them, we need to make a tradeoff between accuracy (the number of decimals we can remember for a number before we need to begin adjusting it) and size (the number of pieces we use to store the number).

The planning of quantization work uses the values of fp32 in int8. This is finished by binning the qualities: planning scopes of qualities in the fp32 space into individual int8 values. For instance, two loads constants 1.2251 and 1.6125 in fp32 may both be changed over to 12 in int8, on the grounds that they are both in the container [1, 2]. Picking the right receptacles is clearly vital.

PyTorch gives three unique quantization calculations, which contrast fundamentally in where they decide these canisters — “dynamic” quantization does as such at runtime, “preparing mindful” quantization does as such at train time, and “static” quantization does as such as an extra moderate advance in the middle of the two. Every one of these methodologies enjoys benefits and drawbacks (which we will cover in the blink of an eye). Note that there are other quantization procedures proposed in scholastic writing too.

PyTorch quantization model

  • First, we need to understand different types of concepts as follows.
  • Quantization Configuration in PyTorch: In which we need to specify the weight of the quantization model.
  • Backend Configuration: In this concept, we specify the kernels with different numeric values.
  • Quantization engine: At the point when a quantized model is executed, the quantization engine indicates which backend is to be utilized for execution. Guarantee that the quantization engine is steady with the Quantization Configuration.
  • After that, we need to define the workflow of the quantized model that we can use pre-trained quantized model or post-training quantized model, so as per our requirement we can use any model.

Now we need to check which type of device and operator are to be supported.

All in One Software Development Bundle(600+ Courses, 50+ projects)
Python TutorialC SharpJavaJavaScript
C Plus PlusSoftware TestingSQLKali Linux
Price
View Courses
600+ Online Courses | 50+ projects | 3000+ Hours | Verifiable Certificates | Lifetime Access
4.6 (86,629 ratings)

The set of accessible administrators and the quantization numeric additionally rely upon the backend being utilized to run quantized models. Presently quantized administrators are upheld just for CPU derivation in the accompanying backend x86 and ARM. Both the quantization arrangement (how tensors ought to be quantized and the quantized pieces (number juggling with quantized tensors) are subordinate.

Three types of quantization

Now let’s see the three types of quantization as follows.

1. Dynamic Quantization:

This very the easiest method of quantization, by using this model we can convert the activation to int8 before the computation. That means computation can perform only by using int8 matrix multiplication inefficiently.

2. Post-training static quantization:

One can additionally work on the presentation (idleness) by changing organizations over to utilize both whole number math and int8 memory. Static quantization plays out the extra advance of initial taking care of groups of information through the organization and registering the subsequent appropriations of the various enactments

3. Quantization Aware Training:

This is the third strategy and the one that ordinarily brings about the most noteworthy precision of these three. With QAT, all loads and actions are “phonily quantized” during both the forward and in reverse passes of preparing: that is, float esteems are adjusted to imitate int8 values, yet all calculations are as yet finished with drifting point numbers.

Static quantization

Static quantization quantizes the loads and actuation of the model. It permits the client to meld initiations into going before layers where conceivable. Subsequently, static quantization is hypothetically quicker than dynamic quantization while the model size and memory data transmission utilizations stay to be something similar.

Improved performance in practice

By using quantization, we can improve the performance of deep learning, we know that quantization is worked on integer values instead of floating-point. Normally quantization provides the different models and modes to improve the performance of the model.

Examples:

import torchvision
model_quant = torchvision.models.quantization.mobilenet_v2(pretrained=True, quantize=True)
model_data = torchvision.models.mobilenet_v2(pretrained=True)
import os
import torch
def model_size(modl):
torch.save(modl.state_dict(), "demo.pt")
print("%.2f MB" %(os.path.getsize("demo.pt")/1e6))
os.remove('demo.pt')
model_size(model_data)
model_size(model_quant)

Explanation

The final output of the above program we illustrated by using the following screenshot as follows.

12

Conclusion

We hope from this article you learn more about the PyTorch Quantization. From the above article, we have taken in the essential idea of the PyTorch Quantization and we also see the representation and example of PyTorch Quantization. From this article, we learned how and when we use the PyTorch Quantization.

Recommended Articles

This is a guide to PyTorch Quantization. Here we discuss the definition, What is PyTorch Quantization, How quantization works? examples with code implementation. You may also have a look at the following articles to learn more –

  1. Dataset Pytorch
  2. PyTorch Conv2d
  3. Mxnet vs Pytorch
  4. What is PyTorch?
Popular Course in this category
Machine Learning Training (20 Courses, 29+ Projects)
  19 Online Courses |  29 Hands-on Projects |  178+ Hours |  Verifiable Certificate of Completion
4.7
Price

View Course
0 Shares
Share
Tweet
Share
Primary Sidebar
Footer
About Us
  • Blog
  • Who is EDUCBA?
  • Sign Up
  • Live Classes
  • Corporate Training
  • Certificate from Top Institutions
  • Contact Us
  • Verifiable Certificate
  • Reviews
  • Terms and Conditions
  • Privacy Policy
  •  
Apps
  • iPhone & iPad
  • Android
Resources
  • Free Courses
  • Java Tutorials
  • Python Tutorials
  • All Tutorials
Certification Courses
  • All Courses
  • Software Development Course - All in One Bundle
  • Become a Python Developer
  • Java Course
  • Become a Selenium Automation Tester
  • Become an IoT Developer
  • ASP.NET Course
  • VB.NET Course
  • PHP Course

ISO 10004:2018 & ISO 9001:2015 Certified

© 2022 - EDUCBA. ALL RIGHTS RESERVED. THE CERTIFICATION NAMES ARE THE TRADEMARKS OF THEIR RESPECTIVE OWNERS.

EDUCBA
Free Software Development Course

C# Programming, Conditional Constructs, Loops, Arrays, OOPS Concept

*Please provide your correct email id. Login details for this Free course will be emailed to you

By signing up, you agree to our Terms of Use and Privacy Policy.

EDUCBA Login

Forgot Password?

By signing up, you agree to our Terms of Use and Privacy Policy.

EDUCBA
Free Software Development Course

Web development, programming languages, Software testing & others

*Please provide your correct email id. Login details for this Free course will be emailed to you

By signing up, you agree to our Terms of Use and Privacy Policy.

EDUCBA

*Please provide your correct email id. Login details for this Free course will be emailed to you

By signing up, you agree to our Terms of Use and Privacy Policy.

Let’s Get Started

By signing up, you agree to our Terms of Use and Privacy Policy.

This website or its third-party tools use cookies, which are necessary to its functioning and required to achieve the purposes illustrated in the cookie policy. By closing this banner, scrolling this page, clicking a link or continuing to browse otherwise, you agree to our Privacy Policy

Loading . . .
Quiz
Question:

Answer:

Quiz Result
Total QuestionsCorrect AnswersWrong AnswersPercentage

Explore 1000+ varieties of Mock tests View more