EDUCBA

EDUCBA

MENUMENU
  • Free Tutorials
  • Free Courses
  • Certification Courses
  • 360+ Courses All in One Bundle
  • Login

Machine Learning Software

By Priya PedamkarPriya Pedamkar

Home » Data Science » Data Science Tutorials » Machine Learning Tutorial » Machine Learning Software

Machine Learning Software

Introduction to Machine Learning Software

Machine Learning is a scientific application based on AI(Artificial Intelligence) that enables the computer system to learn, perform a certain task, and improve the experience gained out of it without programming it actually exclusively. Machine Learning algorithms are used in day-to-day exercises such as search engines, image & speech recognition, healthcare diagnosis, etc. These algorithms need certain software and tools to execute and perform certain actions. Machine Learning software has its own set of tools, libraries, and resources to develop applications that can replicate human behavior with smart machines and applications. The software we’ll be highlighting is reflected below.

Types of Machine Learning Software

There are tons of Machine Learning software available in the market. Some of the software has exclusive and unique features. At the same time, there are some tools that are comparatively better. Many businesses have started to adopt the technology to increase their ROI (Return on Investment). As Machine Learning is a part of AI (Artificial Intelligence), machines are trained from the result or pattern to develop new changes autonomously. Some types of Machine Learning software are- Azure Machine Learning Studio, Shogun, Apache Mahout, Apache Spark MLlib, IBM Watson Machine Learning, RapidMinor, Weka, Google Cloud ML Engine, Pytroch, Figure Eight, Crab, Microsoft Cognitive Toolkit, Torch, etc. Let’s have a closer look at some top and most used software that Machine Learning experts rely on.

Start Your Free Data Science Course

Hadoop, Data Science, Statistics & others

Top Machine Learning software

Below are the various machine learning software:

1. Google Cloud ML Engine

Google’s Cloud Machine Learning Engine is one of the popular applications for training, analysis, and deep learning.

2. Azure ML Studio

It is a code-free, drag and drop solution for ML experts for convenient use made by Microsoft.

3. IBM Watson Machine Learning

With its open-source model operation, it helps data scientists and developers to expedite AI and Machine Learning applications.

4. TensorFlow

It’s a new open-source framework released in 2015 and not complex to operate and as well can be deployed over various platforms. Made by Google, TensorFlow is available for Python, C++, Java, Rust, etc.

Popular Course in this category
Sale
Machine Learning Training (19 Courses, 29+ Projects)19 Online Courses | 29 Hands-on Projects | 178+ Hours | Verifiable Certificate of Completion | Lifetime Access
4.7 (13,392 ratings)
Course Price

View Course

Related Courses
Deep Learning Training (15 Courses, 24+ Projects)Artificial Intelligence Training (5 Courses, 2 Project)

5. Microsoft Cognitive Toolkit

Microsoft’s newly launched AI solution can train the machine with its deep learning algorithms to behave like a human brain and face. It can handle data from Python, C++, etc.

6. Theano

It is a Python-based open-source library for deep learning algorithms to accelerate Machine Learning deployment. Theano is capable of taking data structures to the next level with the integration of Python libraries like NumPy, Pandas, and some native programs.

7. Torch

This typical older Machine Learning library fascinates flexibility and speediness in operations while deploying Machine Learning projects.

8. Apache Spark MLlib

Apache Spark is a trusted Machine Learning tool for advanced Machine Learning and deep learning. It is a seamless, scalable platform that can be integrated with Hadoop for better results from algorithms. Classification, Regression, Gradient boosting, Decision Trees, LDA, etc are some of the algorithms to support MLlib.

9. Pytorch

Pytorch is developed by Facebook for advanced deep learning using Neural Networks and Tensors. It is ascertained that researchers across the world use Pytorch for dynamic graphical representation and blueprint techniques.

10. Ideas2T Technologies

Ideas2T tool, unlike others, has a unique feature that can help recruiters to hire the right candidates based on their resume(s) through Machine Learning. It has been an intersection for start-ups, enterprises and business houses because of its cutting-edge and advanced algorithms.

Merits of Machine Learning Software

Machine Learning, a subset of AI that helps to examine and learn from the data and to make certain decisions out of it. It is capable of delivering decisions and recommendations at high speed with accuracy. So, ML software is very popular. Interestingly, they are inexpensive too. Both Machine Learning and AI work on large and complex data sets to visualize and make perfect decisions. A few examples are as under:

  • Facebook: When we upload a photo on Facebook, it recognizes a person from the same photo and suggests mutual friendship. This is how ML works.
  • Netflix: Netflix sometimes sends suggestions of web shows or movies based on what we have watched earlier. Basically, Machine Learning is used to select data based on choice.

Business entities and organizations use the right pair of the algorithm with a certain tool and make Machine Learning models based on learning from the data. It helps enterprises to work more efficiently to build high-end models at a low cost. Machine Learning software helps in the automation of data analysis which reduces manpower and makes it cost-effective. This process is quite iterative and scalable.

There are several other applications where ML is used in day-to-day life. Some of the areas where ML software is efficiently used are as follows:

  • Financial Services: The financial sector use this to identify insights for investments, trading and even ascertaining financial risks.
  • Marketing & Sales: Various companies and other similar establishments use Machine Learning software to analyze the history of purchases and make recommendations for customers depending on it.
  • Healthcare: Electronic wearables and sensors are used widely nowadays. Sensors in those wearables provide real-time data on blood pressure, heartbeat, and other vital information related to health.
  • Transportation: Machine Learning software analyses the travel history and routes to identify problems, if any, so as to help customers/passengers opt-out of risk-prone areas in the future.
  • Government: Some Government agencies use ML tools to extract insights to minimize cost and increase efficiency in their operations.
  • Oil & Gas: Machine Learning is mostly used in the energy sectors. It helps analyze existing and new energy sources for exploration and distribution. Many oil agencies in both Government and Private sectors have adopted these techniques.

Conclusion

Machine Learning and Artificial Intelligence have wide and broad uses among modern generations and is still expanding. Hence, it won’t be wrong to opine that Machine Learning software performs actions from the input data set and play a big role in providing insights from raw data to improve commercial and other goals.

Recommended Articles

This is a guide to Machine Learning Software. Here we discuss the introduction and top 10 software of machine learning along with its merits. You may also look at the following articles to learn more-

  1. What is Reinforcement Learning?
  2. Types of Machine Learning Algorithms
  3. Introduction to IoT
  4. Applications of Machine Learning

Machine Learning Training (17 Courses, 27+ Projects)

19 Online Courses

29 Hands-on Projects

178+ Hours

Verifiable Certificate of Completion

Lifetime Access

Learn More

1 Shares
Share
Tweet
Share
Primary Sidebar
Machine Learning Tutorial
  • Basic
    • Introduction To Machine Learning
    • What is Machine Learning?
    • Uses of Machine Learning
    • Applications of Machine Learning
    • Naive Bayes in Machine Learning
    • Dataset Labelling
    • DataSet Example
    • Dataset ZFS
    • Careers in Machine Learning
    • What is Machine Cycle?
    • Machine Learning Feature
    • Machine Learning Programming Languages
    • What is Kernel in Machine Learning
    • Machine Learning Tools
    • Machine Learning Models
    • Machine Learning Platform
    • Machine Learning Libraries
    • Machine Learning Life Cycle
    • Machine Learning System
    • Machine Learning Datasets
    • Top 7 Useful Benefits Of Machine Learning Certifications
    • Machine Learning Python vs R
    • Optimization for Machine Learning
    • Types of Machine Learning
    • Machine Learning Methods
    • Machine Learning Software
    • Machine Learning Techniques
    • Machine Learning Feature Selection
    • Ensemble Methods in Machine Learning
    • Support Vector Machine in Machine Learning
    • Decision Making Techniques
    • Restricted Boltzmann Machine
    • Regularization Machine Learning
    • What is Regression?
    • What is Linear Regression?
    • Dataset for Linear Regression
    • Decision tree limitations
    • What is Decision Tree?
    • What is Random Forest
  • Algorithms
    • Machine Learning Algorithms
    • Apriori Algorithm in Machine Learning
    • Types of Machine Learning Algorithms
    • Bayes Theorem
    • AdaBoost Algorithm
    • Classification Algorithms
    • Clustering Algorithm
    • Gradient Boosting Algorithm
    • Mean Shift Algorithm
    • Hierarchical Clustering Algorithm
    • Hierarchical Clustering Agglomerative
    • What is a Greedy Algorithm?
    • What is Genetic Algorithm?
    • Random Forest Algorithm
    • Nearest Neighbors Algorithm
    • Weak Law of Large Numbers
    • Ray Tracing Algorithm
    • SVM Algorithm
    • Naive Bayes Algorithm
    • Neural Network Algorithms
    • Boosting Algorithm
    • XGBoost Algorithm
    • Pattern Searching
    • Loss Functions in Machine Learning
    • Decision Tree in Machine Learning
    • Hyperparameter Machine Learning
    • Unsupervised Machine Learning
    • K- Means Clustering Algorithm
    • KNN Algorithm
    • Monty Hall Problem
  • Supervised
    • What is Supervised Learning
    • Supervised Machine Learning
    • Supervised Machine Learning Algorithms
    • Perceptron Learning Algorithm
    • Simple Linear Regression
    • Polynomial Regression
    • Multivariate Regression
    • Regression in Machine Learning
    • Hierarchical Clustering Analysis
    • Linear Regression Analysis
    • Support Vector Regression
    • Multiple Linear Regression
    • Linear Algebra in Machine Learning
    • Statistics for Machine Learning
    • What is Regression Analysis?
    • Clustering Methods
    • Backward Elimination
    • Ensemble Techniques
    • Bagging and Boosting
    • Linear Regression Modeling
    • What is Reinforcement Learning
  • Classification
    • Kernel Methods in Machine Learning
    • Clustering in Machine Learning
    • Machine Learning Architecture
    • Automation Anywhere Architecture
    • Machine Learning C++ Library
    • Machine Learning Frameworks
    • Data Preprocessing in Machine Learning
    • Data Science Machine Learning
    • Classification of Neural Network
    • Neural Network Machine Learning
    • What is Convolutional Neural Network?
    • Single Layer Neural Network
    • Kernel Methods
    • Forward and Backward Chaining
    • Forward Chaining
    • Backward Chaining
  • Deep Learning
    • What Is Deep learning
    • Overviews Deep Learning
    • Application of Deep Learning
    • Careers in Deep Learnings
    • Deep Learning Frameworks
    • Deep Learning Model
    • Deep Learning Algorithms
    • Deep Learning Technique
    • Deep Learning Networks
    • Deep Learning Libraries
    • Deep Learning Toolbox
    • Types of Neural Networks
    • Convolutional Neural Networks
    • Create Decision Tree
    • Deep Learning for NLP
    • Caffe Deep Learning
    • Deep Learning with TensorFlow
  • RPA
    • What is RPA
    • What is Robotics?
    • Benefits of RPA
    • RPA Applications
    • Types of Robots
    • RPA Tools
    • Line Follower Robot
    • What is Blue Prism?
    • RPA vs BPM
  • PyTorch
    • PyTorch Tensors
    • What is PyTorch?
    • PyTorch MSELoss()
    • PyTorch NLLLOSS
    • PyTorch MaxPool2d
    • PyTorch Pretrained Models
    • PyTorch Squeeze
    • PyTorch Reinforcement Learning
    • PyTorch zero_grad
    • PyTorch norm
    • PyTorch VAE
    • PyTorch Early Stopping
    • PyTorch requires_grad
    • PyTorch MNIST
    • PyTorch Conv2d
    • Dataset Pytorch
    • PyTorch tanh
    • PyTorch bmm
    • PyTorch profiler
    • PyTorch unsqueeze
    • PyTorch adam
    • PyTorch backward
    • PyTorch concatenate
    • PyTorch Embedding
    • PyTorch Tensor to NumPy
    • PyTorch Normalize
    • PyTorch ReLU
    • PyTorch Autograd
    • PyTorch Transpose
    • PyTorch Object Detection
    • PyTorch Autoencoder
    • PyTorch Loss
    • PyTorch repeat
    • PyTorch gather
    • PyTorch sequential
    • PyTorch U-NET
    • PyTorch Sigmoid
    • PyTorch Neural Network
    • PyTorch Quantization
    • PyTorch Ignite
    • PyTorch Versions
    • PyTorch TensorBoard
    • PyTorch Dropout
    • PyTorch Model
    • PyTorch optimizer
    • PyTorch ResNet
    • PyTorch CNN
    • PyTorch Detach
    • Single Layer Perceptron
    • PyTorch vs Keras
    • torch.nn Module
  • UiPath
    • What is UiPath
    • UiPath Action Center
    • UiPath?Orchestrator
    • UiPath web automation
    • UiPath Orchestrator API
    • UiPath Delay
    • UiPath Careers
    • UiPath Architecture
    • UiPath version
    • Uipath Reframework
    • UiPath Studio
  • Interview Questions
    • Deep Learning Interview Questions And Answer
    • Machine Learning Cheat Sheet

Related Courses

Machine Learning Training

Deep Learning Training

Artificial Intelligence Training

Footer
About Us
  • Blog
  • Who is EDUCBA?
  • Sign Up
  • Live Classes
  • Corporate Training
  • Certificate from Top Institutions
  • Contact Us
  • Verifiable Certificate
  • Reviews
  • Terms and Conditions
  • Privacy Policy
  •  
Apps
  • iPhone & iPad
  • Android
Resources
  • Free Courses
  • Database Management
  • Machine Learning
  • All Tutorials
Certification Courses
  • All Courses
  • Data Science Course - All in One Bundle
  • Machine Learning Course
  • Hadoop Certification Training
  • Cloud Computing Training Course
  • R Programming Course
  • AWS Training Course
  • SAS Training Course

© 2022 - EDUCBA. ALL RIGHTS RESERVED. THE CERTIFICATION NAMES ARE THE TRADEMARKS OF THEIR RESPECTIVE OWNERS.

EDUCBA
Free Data Science Course

Hadoop, Data Science, Statistics & others

*Please provide your correct email id. Login details for this Free course will be emailed to you

By signing up, you agree to our Terms of Use and Privacy Policy.

EDUCBA
Free Data Science Course

Hadoop, Data Science, Statistics & others

*Please provide your correct email id. Login details for this Free course will be emailed to you

By signing up, you agree to our Terms of Use and Privacy Policy.

Let’s Get Started

By signing up, you agree to our Terms of Use and Privacy Policy.

Loading . . .
Quiz
Question:

Answer:

Quiz Result
Total QuestionsCorrect AnswersWrong AnswersPercentage

Explore 1000+ varieties of Mock tests View more

EDUCBA Login

Forgot Password?

By signing up, you agree to our Terms of Use and Privacy Policy.

This website or its third-party tools use cookies, which are necessary to its functioning and required to achieve the purposes illustrated in the cookie policy. By closing this banner, scrolling this page, clicking a link or continuing to browse otherwise, you agree to our Privacy Policy

EDUCBA

*Please provide your correct email id. Login details for this Free course will be emailed to you

By signing up, you agree to our Terms of Use and Privacy Policy.

Special Offer - Machine Learning Training (17 Courses, 27+ Projects) Learn More