EDUCBA

EDUCBA

MENUMENU
  • Free Tutorials
  • Free Courses
  • Certification Courses
  • 360+ Courses All in One Bundle
  • Login

Kernel Methods in Machine Learning

By Priya PedamkarPriya Pedamkar

Secondary Sidebar
Machine Learning Tutorial
  • Classification
    • Kernel Methods in Machine Learning
    • Clustering in Machine Learning
    • Machine Learning Architecture
    • Automation Anywhere Architecture
    • Machine Learning C++ Library
    • Machine Learning Frameworks
    • Data Preprocessing in Machine Learning
    • Data Science Machine Learning
    • Classification of Neural Network
    • Neural Network Machine Learning
    • What is Convolutional Neural Network?
    • Single Layer Neural Network
    • Kernel Methods
    • Forward and Backward Chaining
    • Forward Chaining
    • Backward Chaining
  • Basic
    • Introduction To Machine Learning
    • What is Machine Learning?
    • Uses of Machine Learning
    • Applications of Machine Learning
    • Naive Bayes in Machine Learning
    • Dataset Labelling
    • DataSet Example
    • Deep Learning Techniques
    • Dataset ZFS
    • Careers in Machine Learning
    • What is Machine Cycle?
    • Machine Learning Feature
    • Machine Learning Programming Languages
    • What is Kernel in Machine Learning
    • Machine Learning Tools
    • Machine Learning Models
    • Machine Learning Platform
    • Machine Learning Libraries
    • Machine Learning Life Cycle
    • Machine Learning System
    • Machine Learning Datasets
    • Machine Learning Certifications
    • Machine Learning Python vs R
    • Optimization for Machine Learning
    • Types of Machine Learning
    • Machine Learning Methods
    • Machine Learning Software
    • Machine Learning Techniques
    • Machine Learning Feature Selection
    • Ensemble Methods in Machine Learning
    • Support Vector Machine in Machine Learning
    • Decision Making Techniques
    • Restricted Boltzmann Machine
    • Regularization Machine Learning
    • What is Regression?
    • What is Linear Regression?
    • Dataset for Linear Regression
    • Decision tree limitations
    • What is Decision Tree?
    • What is Random Forest
  • Algorithms
    • Machine Learning Algorithms
    • Apriori Algorithm in Machine Learning
    • Types of Machine Learning Algorithms
    • Bayes Theorem
    • AdaBoost Algorithm
    • Classification Algorithms
    • Clustering Algorithm
    • Gradient Boosting Algorithm
    • Mean Shift Algorithm
    • Hierarchical Clustering Algorithm
    • Hierarchical Clustering Agglomerative
    • What is a Greedy Algorithm?
    • What is Genetic Algorithm?
    • Random Forest Algorithm
    • Nearest Neighbors Algorithm
    • Weak Law of Large Numbers
    • Ray Tracing Algorithm
    • SVM Algorithm
    • Naive Bayes Algorithm
    • Neural Network Algorithms
    • Boosting Algorithm
    • XGBoost Algorithm
    • Pattern Searching
    • Loss Functions in Machine Learning
    • Decision Tree in Machine Learning
    • Hyperparameter Machine Learning
    • Unsupervised Machine Learning
    • K- Means Clustering Algorithm
    • KNN Algorithm
    • Monty Hall Problem
  • Supervised
    • What is Supervised Learning
    • Supervised Machine Learning
    • Supervised Machine Learning Algorithms
    • Perceptron Learning Algorithm
    • Simple Linear Regression
    • Polynomial Regression
    • Multivariate Regression
    • Regression in Machine Learning
    • Hierarchical Clustering Analysis
    • Linear Regression Analysis
    • Support Vector Regression
    • Multiple Linear Regression
    • Linear Algebra in Machine Learning
    • Statistics for Machine Learning
    • What is Regression Analysis?
    • Clustering Methods
    • Backward Elimination
    • Ensemble Techniques
    • Bagging and Boosting
    • Linear Regression Modeling
    • What is Reinforcement Learning
  • Deep Learning
    • What Is Deep learning
    • Overviews Deep Learning
    • Application of Deep Learning
    • Careers in Deep Learnings
    • Deep Learning Frameworks
    • Deep Learning Model
    • Deep Learning Algorithms
    • Deep Learning Technique
    • Deep Learning Networks
    • Deep Learning Libraries
    • Deep Learning Toolbox
    • Types of Neural Networks
    • Convolutional Neural Networks
    • Create Decision Tree
    • Deep Learning for NLP
    • Caffe Deep Learning
    • Deep Learning with TensorFlow
  • RPA
    • What is RPA
    • What is Robotics?
    • Benefits of RPA
    • RPA Applications
    • Types of Robots
    • RPA Tools
    • Line Follower Robot
    • What is Blue Prism?
    • RPA vs BPM
  • Interview Questions
    • Deep Learning Interview Questions And Answer
    • Machine Learning Cheat Sheet

Related Courses

Machine Learning Training

Deep Learning Training

Artificial Intelligence Training

Home Data Science Data Science Tutorials Machine Learning Tutorial Kernel Methods in Machine Learning

Kernel Methods in Machine Learning

Introduction to Kernel Methods in Machine Learning

Kernel method in machine learning is defined as the class of algorithms for pattern analysis, which is used to study and find the general types of relations (such as correlation, classification, ranking, clusters, principle components, etc) in datasets by transforming raw representation of the data explicitly into feature vector representation using a user-specified feature map so that the high dimensional implicit feature space of these data can be operated with computing the coordinates of the data in that particular space.

The algorithm used for pattern analysis. In general pattern, analysis is done to find relations in datasets. These relations can be clustering, classification, principal components, correlation, etc. Most of these algorithms that solve these tasks of analyzing the pattern, Need the data in raw representative, to be explicitly transformed into a feature vector representation. This transformation can be done via a user-specified feature map. So, it can be taken that only the user-specified kernel is required by the kernel method.

Start Your Free Data Science Course

Hadoop, Data Science, Statistics & others

The terminology Kernal Method comes from the fact that they use kernel function, which allows them to perform the operation in high-dimensional, implicit feature space without the need of computing the coordinates of the data in that space. Instead, they simply compute the inner product between the images of all pairs of data in feature space.

All in One Data Science Bundle(360+ Courses, 50+ projects)
Python TutorialMachine LearningAWSArtificial Intelligence
TableauR ProgrammingPowerBIDeep Learning
Price
View Courses
360+ Online Courses | 50+ projects | 1500+ Hours | Verifiable Certificates | Lifetime Access
4.7 (85,938 ratings)

These kinds of operations are computationally cheaper most of the time compared to the explicit computation of the coordinates. This technique is termed as ‘kernel trick’. Any linear model can be converted into a non-linear model by applying the kernel trick to the model.

Kernel Method available in machine learning is principal components analysis (PCA), spectral clustering, support vector machines (SVM), canonical correlation analysis, kernel perceptron, Gaussian processes, ridge regression, linear adaptive filters, and many others. Let’s have a high-level understanding of a few of these kernel methods.

Top 7 Methods of Kernel in Machine Learning

Here are the Methods of Kernel in Machine Learning mention below:

Kernel Methods in Machine Learning

1. Principle Component Analysis

Principal component analysis (PCA) is a technique for extracting structure from possibly high-dimensional data sets. It is readily performed by using iterative algorithms that estimate principal components or by solving an eigenvalue problem. PCA is an orthogonal transformation of the coordinate system in which we describe our data. The new coordinate system is obtained by projection on the principal axes of the data. A small number of principal components is often sufficient to account for most of the structure in the data. One of its major application is to perform exploratory data analysis for making a predictive model. It mostly used to visualize the relatedness between populations and genetic distance.

2. Support Vector Machine

SVM can be defined as a classifier for separating hyperplane where hyperplane is the subspace of one dimension less than the ambient space. The dimension of this mathematical space is defined as the minimum number of coordinates required to specify any point while the ambient space is the space that surrounds the mathematical object. Now Mathematical object can be understood as an abstract object which does not exist at any time or place but exists as a type of thing.

3. Gaussian Process

The Gaussian process was named after Cark Friedrich Gauss because it uses the notation of Gaussian distribution (normal distribution). It is a stochastic process which means a collection of random variables indexed by time or space. In Gaussian Process random variables have a multivariate normal distribution, i.e. all the finite linear combinations of it are normally distributed. The Gaussian process uses the properties inherited from a normal distribution and therefore are useful in statistical modeling. Machine Learning algorithm that involves this kernel method uses the measure of lazy learning and the similarity between points to predict the value of unseen points from training data. This prediction is not only the estimate but the uncertainty at that point.

4. Canonical Correlation Analysis

Canonical Correlation Analysis is a way of inferring information from cross-covariance matrices. It is also known as canonical variates analysis. Suppose we have two vector X, Y of random variable say two vectors X = (X1, …, Xn) and vector Y = (Y1, …, Ym) , and the variable having correlation, then CCA will compute a linear combination of X and Y which has the max correlation among each other.

5. Spectral Clustering

In the application of image segmentation, spectral clustering is known as segmentation-based object categorization. In Spectral Clustering, dimensionality reduction is performed before clustering in fewer dimension, this is done by using the eigenvalue of the similarity matrix of the data. It has its roots in graph theory, where this approach is used to identify communities of nodes in a graph which is based on the edges connecting them. This method is flexible enough and allows us to cluster data from non-graph as well.

6. Adaptive Filter

The adaptive filter uses a linear filter which comprises a transfer function, which is controlled by variable parameters and the methods, which will be used to tweak these parameters as per the optimization algorithm. The complexity of this optimization algorithm is the reason that all adaptive filter is a digital filter. An adaptive filter is needed in those applications where there is no prior information on the desired processing operation in advance or they are changing.

The cost function is used in the closed-loop adaptive filter, as it is necessary for the optimum performance of the filter. It determines how to modify the filter transfer function to reduce the cost of the next iteration. One of the most common function is the mean square error of the error signal.

7. Kernel Perceptron

In machine learning, the kernel perceptron is a type of the popular perceptron learning algorithm that can learn kernel machines, such as non-linear classifiers that uses a kernel function to calculate the similarity of those samples that are unseen to training samples. This algorithm was invented in 1964 making it the first kernel classification learner.

Most of the discussed kernel algorithms are based on convex optimization or eigenproblems and are statistically well-founded. Their statistical properties are analyzed using the statistical learning theory.

Talking about the Application areas of kernel methods it is diverse and includes geostatistics, kriging, inverse distance weighting, 3D reconstruction, bioinformatics, chemoinformatics, information extraction, and handwriting recognition.

Conclusion

I have summarized some of the terminologies and types of kernel methods in Machine Learning. Due to lack of space, this article by no mean is comprehensive and is just meant to give you an understanding of what kernel method is and a short summary of their types. However, covering this article will make you take the first step in the field of Machine Learning.

Recommended Articles

This is a guide to Kernel Method in Machine Learning. Here we discuss the 7 types of Kernel Methods in Machine Learning. You may also look at the following article.

  1. Monolithic Kernel
  2. Clustering in Machine Learning
  3. Data Science Machine Learning
  4. Unsupervised Machine Learning
  5. PHP Filters | How to validate User Input using Various Filters?
  6. Complete Guide to Machine Learning Life Cycle
Popular Course in this category
Machine Learning Training (20 Courses, 29+ Projects)
  19 Online Courses |  29 Hands-on Projects |  178+ Hours |  Verifiable Certificate of Completion
4.7
Price

View Course

Related Courses

Deep Learning Training (18 Courses, 24+ Projects)4.9
Artificial Intelligence AI Training (5 Courses, 2 Project)4.8
0 Shares
Share
Tweet
Share
Primary Sidebar
Footer
About Us
  • Blog
  • Who is EDUCBA?
  • Sign Up
  • Live Classes
  • Corporate Training
  • Certificate from Top Institutions
  • Contact Us
  • Verifiable Certificate
  • Reviews
  • Terms and Conditions
  • Privacy Policy
  •  
Apps
  • iPhone & iPad
  • Android
Resources
  • Free Courses
  • Database Management
  • Machine Learning
  • All Tutorials
Certification Courses
  • All Courses
  • Data Science Course - All in One Bundle
  • Machine Learning Course
  • Hadoop Certification Training
  • Cloud Computing Training Course
  • R Programming Course
  • AWS Training Course
  • SAS Training Course

ISO 10004:2018 & ISO 9001:2015 Certified

© 2022 - EDUCBA. ALL RIGHTS RESERVED. THE CERTIFICATION NAMES ARE THE TRADEMARKS OF THEIR RESPECTIVE OWNERS.

EDUCBA
Free Data Science Course

SPSS, Data visualization with Python, Matplotlib Library, Seaborn Package

*Please provide your correct email id. Login details for this Free course will be emailed to you

By signing up, you agree to our Terms of Use and Privacy Policy.

EDUCBA Login

Forgot Password?

By signing up, you agree to our Terms of Use and Privacy Policy.

EDUCBA
Free Data Science Course

Hadoop, Data Science, Statistics & others

*Please provide your correct email id. Login details for this Free course will be emailed to you

By signing up, you agree to our Terms of Use and Privacy Policy.

EDUCBA

*Please provide your correct email id. Login details for this Free course will be emailed to you

By signing up, you agree to our Terms of Use and Privacy Policy.

Let’s Get Started

By signing up, you agree to our Terms of Use and Privacy Policy.

This website or its third-party tools use cookies, which are necessary to its functioning and required to achieve the purposes illustrated in the cookie policy. By closing this banner, scrolling this page, clicking a link or continuing to browse otherwise, you agree to our Privacy Policy

Loading . . .
Quiz
Question:

Answer:

Quiz Result
Total QuestionsCorrect AnswersWrong AnswersPercentage

Explore 1000+ varieties of Mock tests View more

Special Offer - Machine Learning Training (17 Courses, 27+ Projects) Learn More