EDUCBA

EDUCBA

MENUMENU
  • Free Tutorials
  • Free Courses
  • Certification Courses
  • 360+ Courses All in One Bundle
  • Login
Home Data Science Data Science Tutorials Machine Learning Tutorial Decision tree limitations
Secondary Sidebar
Machine Learning Tutorial
  • Basic
    • Introduction To Machine Learning
    • What is Machine Learning?
    • Uses of Machine Learning
    • Applications of Machine Learning
    • Naive Bayes in Machine Learning
    • Dataset Labelling
    • DataSet Example
    • Deep Learning Techniques
    • Dataset ZFS
    • Careers in Machine Learning
    • What is Machine Cycle?
    • Machine Learning Feature
    • Machine Learning Programming Languages
    • What is Kernel in Machine Learning
    • Machine Learning Tools
    • Machine Learning Models
    • Machine Learning Platform
    • Machine Learning Libraries
    • Machine Learning Life Cycle
    • Machine Learning System
    • Machine Learning Datasets
    • Machine Learning Certifications
    • Machine Learning Python vs R
    • Optimization for Machine Learning
    • Types of Machine Learning
    • Machine Learning Methods
    • Machine Learning Software
    • Machine Learning Techniques
    • Machine Learning Feature Selection
    • Ensemble Methods in Machine Learning
    • Support Vector Machine in Machine Learning
    • Decision Making Techniques
    • Restricted Boltzmann Machine
    • Regularization Machine Learning
    • What is Regression?
    • What is Linear Regression?
    • Dataset for Linear Regression
    • Decision tree limitations
    • What is Decision Tree?
    • What is Random Forest
  • Algorithms
    • Machine Learning Algorithms
    • Apriori Algorithm in Machine Learning
    • Types of Machine Learning Algorithms
    • Bayes Theorem
    • AdaBoost Algorithm
    • Classification Algorithms
    • Clustering Algorithm
    • Gradient Boosting Algorithm
    • Mean Shift Algorithm
    • Hierarchical Clustering Algorithm
    • Hierarchical Clustering Agglomerative
    • What is a Greedy Algorithm?
    • What is Genetic Algorithm?
    • Random Forest Algorithm
    • Nearest Neighbors Algorithm
    • Weak Law of Large Numbers
    • Ray Tracing Algorithm
    • SVM Algorithm
    • Naive Bayes Algorithm
    • Neural Network Algorithms
    • Boosting Algorithm
    • XGBoost Algorithm
    • Pattern Searching
    • Loss Functions in Machine Learning
    • Decision Tree in Machine Learning
    • Hyperparameter Machine Learning
    • Unsupervised Machine Learning
    • K- Means Clustering Algorithm
    • KNN Algorithm
    • Monty Hall Problem
  • Supervised
    • What is Supervised Learning
    • Supervised Machine Learning
    • Supervised Machine Learning Algorithms
    • Perceptron Learning Algorithm
    • Simple Linear Regression
    • Polynomial Regression
    • Multivariate Regression
    • Regression in Machine Learning
    • Hierarchical Clustering Analysis
    • Linear Regression Analysis
    • Support Vector Regression
    • Multiple Linear Regression
    • Linear Algebra in Machine Learning
    • Statistics for Machine Learning
    • What is Regression Analysis?
    • Clustering Methods
    • Backward Elimination
    • Ensemble Techniques
    • Bagging and Boosting
    • Linear Regression Modeling
    • What is Reinforcement Learning
  • Classification
    • Kernel Methods in Machine Learning
    • Clustering in Machine Learning
    • Machine Learning Architecture
    • Automation Anywhere Architecture
    • Machine Learning C++ Library
    • Machine Learning Frameworks
    • Data Preprocessing in Machine Learning
    • Data Science Machine Learning
    • Classification of Neural Network
    • Neural Network Machine Learning
    • What is Convolutional Neural Network?
    • Single Layer Neural Network
    • Kernel Methods
    • Forward and Backward Chaining
    • Forward Chaining
    • Backward Chaining
  • Deep Learning
    • What Is Deep learning
    • Overviews Deep Learning
    • Application of Deep Learning
    • Careers in Deep Learnings
    • Deep Learning Frameworks
    • Deep Learning Model
    • Deep Learning Algorithms
    • Deep Learning Technique
    • Deep Learning Networks
    • Deep Learning Libraries
    • Deep Learning Toolbox
    • Types of Neural Networks
    • Convolutional Neural Networks
    • Create Decision Tree
    • Deep Learning for NLP
    • Caffe Deep Learning
    • Deep Learning with TensorFlow
  • RPA
    • What is RPA
    • What is Robotics?
    • Benefits of RPA
    • RPA Applications
    • Types of Robots
    • RPA Tools
    • Line Follower Robot
    • What is Blue Prism?
    • RPA vs BPM
  • Interview Questions
    • Deep Learning Interview Questions And Answer
    • Machine Learning Cheat Sheet

Related Courses

Machine Learning Training

Deep Learning Training

Artificial Intelligence Training

Decision tree limitations

Decision tree limitations

Introduction to Decision Tree Limitations

Decision Tree models are sophisticated analytical models that are simple to comprehend, visualize, execute, and score, with minimum data pre-processing required. These are supervised learning systems in which input is constantly split into distinct groups based on specified factors.  They also have limitations which we are going to discuss; when there are few decisions and consequences in the tree, decision trees are generally simple to understand. Typical examples include the inability to measure attribute values, the high cost and complexity of such measures, and the lack of availability of all attributes at the same time.

Limitations of Decision tree

Here are the following limitations mention below

1.  Not good for Regression

Logistic regression is a statistical analysis approach that uses independent features to try to predict precise probability outcomes. On high-dimensional datasets, this may cause the model to be over-fit on the training set, overstating the accuracy of predictions on the training set, and so preventing the model from accurately predicting results on the test set.

<image>

Start Your Free Data Science Course

Hadoop, Data Science, Statistics & others

This is most common when the model is trained on a small amount of training data with a large number of features. Regularization strategies should be considered on high-dimensional datasets to minimize over-fitting (but this makes the model complex). The model may be under-fit on the training data if the regularization variables are too high.

Complex correlations are difficult to capture with logistic regression. This approach is readily outperformed by more powerful and complicated algorithms such as Neural Networks.

All in One Data Science Bundle(360+ Courses, 50+ projects)
Python TutorialMachine LearningAWSArtificial Intelligence
TableauR ProgrammingPowerBIDeep Learning
Price
View Courses
360+ Online Courses | 50+ projects | 1500+ Hours | Verifiable Certificates | Lifetime Access
4.7 (86,527 ratings)

Because logistic regression(see above figure) has a linear decision surface, it cannot tackle nonlinear issues. In real-world circumstances, linearly separable data is uncommon. As a result, non-linear features must be transformed, which can be done by increasing the number of features such that the data can be separated linearly in higher dimensions.

2. Overfitting Problem

<image>

Overly complicated trees can be created by decision-tree learners, which do not generalize the input well. This is referred to as overfitting. Some of the important techniques to avoid such problems are –

  • Pruning
  • Establishing the minimum amount of samples required at a leaf node
  • Setting the maximum depth of the tree

If we continue to develop the tree, each row of the input data table may be seen as the final rule. On the training data, the model will perform admirably, but it will fail to validate on the test data. Overfitting occurs when the tree reaches a particular level of complexity. Overfitting is quite likely to occur in a really large tree.

The decision makes an effort to avoid overfitting. Trees are nearly always stopped before reaching depth; thus, each leaf node only includes observations from one class or one observation point. There are several methods for determining when to stop growing the tree.

  1. If a leaf node is a pure node at any point during the growth process, no additional downstream trees will grow from that node. Other leaf nodes can be used to continue growing the tree.
  2. When the decrease in tree impurity is relatively slight. When the impurity lowers by a very little amount, say 0.001 or less, this user input parameter causes the tree to be terminated.
  3. When there are only a few observations remaining on the leaf node. This ensures that the tree is terminated when the node’s reliability for further splitting is questioned due to the limited sample size. According to the Central Limit Theorem, a big sample consists of around 30 observations when they are mutually independent. This can serve as a general guide, but because we typically work with multi-dimensional observations that may be associated, this user input parameter should be higher than 30, say 50 or 100 or more.

3. Expensive

The cost of creating a decision tree is high since each node requires field sorting. In other algorithms, a mixture of several fields is used at the same time, resulting in even higher expenses. Pruning methods are also expensive due to the large number of candidate subtrees that must be produced and compared.

4. Independency between samples

Each training example must be completely independent of the other samples in the dataset. If they are related in some manner, the model will try to give those specific training instances more weight. As a result, no matched data or repeated measurements should be used as training data.

5. Unstable

Because slight changes in the data can result in an entirely different tree being constructed, decision trees can be unstable. The use of decision trees within an ensemble helps to solve this difficulty.

6. Greedy Approach

To form a binary tree, the input space must be partitioned correctly. The greedy algorithm used for this is recursive binary splitting. It is a numerical procedure that entails the alignment of various values. Data will be split according to the first best split, and only that path will be used to split the data. However, various pathways of the split could be more instructive; thus, that split may not be the best.

7. Predictions Are Not Smooth or Continuous

As shown in the diagram below, decision tree forecasts are neither smooth or continuous but piecewise constant approximations.

<image>

Conclusion – Decision tree limitations

We mentioned the limitations of Decision Trees above, and it was discovered that the problems of Decision Trees outweigh the benefits, especially in large and complicated trees, preventing their widespread use as a decision-making tool.  To get around the Decision Tree’s constraints, we need to employ Random Forest, which does not rely on a single tree. It plants a forest of trees and then makes a decision based on the number of votes cast. The bagging method, which is one of the Ensemble Learning approaches, is used in Random Forest. Because there is non-linearity at maximum points, you can’t always rely on linear models in machine learning. It should be mentioned that tree models such as Random Forest and Decision trees are good at dealing with non-linearity.

In other words, the decision tree attempted to learn everything possible from the training data, even noise, and outliers. While this is ideal for training data, it has a negative impact on future data (not noisy data).

Recommended Articles

This is a guide to Decision tree limitations. Here we discuss the limitations of Decision Trees above, and it was discovered that the problems of Decision Trees outweigh the benefits. You may also have a look at the following articles to learn more –

  1. What is Decision Tree?
  2. Create Decision Tree
  3. Decision Tree in R
  4. Decision Tree Algorithm
Popular Course in this category
Machine Learning Training (20 Courses, 29+ Projects)
  19 Online Courses |  29 Hands-on Projects |  178+ Hours |  Verifiable Certificate of Completion
4.7
Price

View Course

Related Courses

Deep Learning Training (18 Courses, 24+ Projects)4.9
Artificial Intelligence AI Training (5 Courses, 2 Project)4.8
0 Shares
Share
Tweet
Share
Primary Sidebar
Footer
About Us
  • Blog
  • Who is EDUCBA?
  • Sign Up
  • Live Classes
  • Corporate Training
  • Certificate from Top Institutions
  • Contact Us
  • Verifiable Certificate
  • Reviews
  • Terms and Conditions
  • Privacy Policy
  •  
Apps
  • iPhone & iPad
  • Android
Resources
  • Free Courses
  • Database Management
  • Machine Learning
  • All Tutorials
Certification Courses
  • All Courses
  • Data Science Course - All in One Bundle
  • Machine Learning Course
  • Hadoop Certification Training
  • Cloud Computing Training Course
  • R Programming Course
  • AWS Training Course
  • SAS Training Course

ISO 10004:2018 & ISO 9001:2015 Certified

© 2022 - EDUCBA. ALL RIGHTS RESERVED. THE CERTIFICATION NAMES ARE THE TRADEMARKS OF THEIR RESPECTIVE OWNERS.

EDUCBA
Free Data Science Course

SPSS, Data visualization with Python, Matplotlib Library, Seaborn Package

*Please provide your correct email id. Login details for this Free course will be emailed to you

By signing up, you agree to our Terms of Use and Privacy Policy.

EDUCBA Login

Forgot Password?

By signing up, you agree to our Terms of Use and Privacy Policy.

EDUCBA
Free Data Science Course

Hadoop, Data Science, Statistics & others

*Please provide your correct email id. Login details for this Free course will be emailed to you

By signing up, you agree to our Terms of Use and Privacy Policy.

EDUCBA

*Please provide your correct email id. Login details for this Free course will be emailed to you

By signing up, you agree to our Terms of Use and Privacy Policy.

Let’s Get Started

By signing up, you agree to our Terms of Use and Privacy Policy.

This website or its third-party tools use cookies, which are necessary to its functioning and required to achieve the purposes illustrated in the cookie policy. By closing this banner, scrolling this page, clicking a link or continuing to browse otherwise, you agree to our Privacy Policy

Loading . . .
Quiz
Question:

Answer:

Quiz Result
Total QuestionsCorrect AnswersWrong AnswersPercentage

Explore 1000+ varieties of Mock tests View more