EDUCBA

EDUCBA

MENUMENU
  • Free Tutorials
  • Free Courses
  • Certification Courses
  • 360+ Courses All in One Bundle
  • Login
Home Data Science Data Science Tutorials Machine Learning Tutorial Dataset for Linear Regression
Secondary Sidebar
Machine Learning Tutorial
  • Basic
    • Introduction To Machine Learning
    • What is Machine Learning?
    • Uses of Machine Learning
    • Applications of Machine Learning
    • Naive Bayes in Machine Learning
    • Dataset Labelling
    • DataSet Example
    • Deep Learning Techniques
    • Dataset ZFS
    • Careers in Machine Learning
    • What is Machine Cycle?
    • Machine Learning Feature
    • Machine Learning Programming Languages
    • What is Kernel in Machine Learning
    • Machine Learning Tools
    • Machine Learning Models
    • Machine Learning Platform
    • Machine Learning Libraries
    • Machine Learning Life Cycle
    • Machine Learning System
    • Machine Learning Datasets
    • Machine Learning Certifications
    • Machine Learning Python vs R
    • Optimization for Machine Learning
    • Types of Machine Learning
    • Machine Learning Methods
    • Machine Learning Software
    • Machine Learning Techniques
    • Machine Learning Feature Selection
    • Ensemble Methods in Machine Learning
    • Support Vector Machine in Machine Learning
    • Decision Making Techniques
    • Restricted Boltzmann Machine
    • Regularization Machine Learning
    • What is Regression?
    • What is Linear Regression?
    • Dataset for Linear Regression
    • Decision tree limitations
    • What is Decision Tree?
    • What is Random Forest
  • Algorithms
    • Machine Learning Algorithms
    • Apriori Algorithm in Machine Learning
    • Types of Machine Learning Algorithms
    • Bayes Theorem
    • AdaBoost Algorithm
    • Classification Algorithms
    • Clustering Algorithm
    • Gradient Boosting Algorithm
    • Mean Shift Algorithm
    • Hierarchical Clustering Algorithm
    • Hierarchical Clustering Agglomerative
    • What is a Greedy Algorithm?
    • What is Genetic Algorithm?
    • Random Forest Algorithm
    • Nearest Neighbors Algorithm
    • Weak Law of Large Numbers
    • Ray Tracing Algorithm
    • SVM Algorithm
    • Naive Bayes Algorithm
    • Neural Network Algorithms
    • Boosting Algorithm
    • XGBoost Algorithm
    • Pattern Searching
    • Loss Functions in Machine Learning
    • Decision Tree in Machine Learning
    • Hyperparameter Machine Learning
    • Unsupervised Machine Learning
    • K- Means Clustering Algorithm
    • KNN Algorithm
    • Monty Hall Problem
  • Supervised
    • What is Supervised Learning
    • Supervised Machine Learning
    • Supervised Machine Learning Algorithms
    • Perceptron Learning Algorithm
    • Simple Linear Regression
    • Polynomial Regression
    • Multivariate Regression
    • Regression in Machine Learning
    • Hierarchical Clustering Analysis
    • Linear Regression Analysis
    • Support Vector Regression
    • Multiple Linear Regression
    • Linear Algebra in Machine Learning
    • Statistics for Machine Learning
    • What is Regression Analysis?
    • Clustering Methods
    • Backward Elimination
    • Ensemble Techniques
    • Bagging and Boosting
    • Linear Regression Modeling
    • What is Reinforcement Learning
  • Classification
    • Kernel Methods in Machine Learning
    • Clustering in Machine Learning
    • Machine Learning Architecture
    • Automation Anywhere Architecture
    • Machine Learning C++ Library
    • Machine Learning Frameworks
    • Data Preprocessing in Machine Learning
    • Data Science Machine Learning
    • Classification of Neural Network
    • Neural Network Machine Learning
    • What is Convolutional Neural Network?
    • Single Layer Neural Network
    • Kernel Methods
    • Forward and Backward Chaining
    • Forward Chaining
    • Backward Chaining
  • Deep Learning
    • What Is Deep learning
    • Overviews Deep Learning
    • Application of Deep Learning
    • Careers in Deep Learnings
    • Deep Learning Frameworks
    • Deep Learning Model
    • Deep Learning Algorithms
    • Deep Learning Technique
    • Deep Learning Networks
    • Deep Learning Libraries
    • Deep Learning Toolbox
    • Types of Neural Networks
    • Convolutional Neural Networks
    • Create Decision Tree
    • Deep Learning for NLP
    • Caffe Deep Learning
    • Deep Learning with TensorFlow
  • RPA
    • What is RPA
    • What is Robotics?
    • Benefits of RPA
    • RPA Applications
    • Types of Robots
    • RPA Tools
    • Line Follower Robot
    • What is Blue Prism?
    • RPA vs BPM
  • Interview Questions
    • Deep Learning Interview Questions And Answer
    • Machine Learning Cheat Sheet

Related Courses

Machine Learning Training

Deep Learning Training

Artificial Intelligence Training

Dataset for Linear Regression

Dataset for Linear Regression

Introduction to Dataset for Linear Regression

The dataset for linear regression is defined as in machine learning it is an algorithm that can be categorized in supervised learning to find the target variable between the dependent variables and the independent variables; also, it can allow us to establish a relationship between those variables which are the best suit for a relationship, in machine learning it can be used to closely relate variables which are related to dependent variables and it can be used for a large amount of data when analyzing the data while constructing the model it can be used to find the anticipated value of the dependent variable.

What is Dataset for Linear Regression?

  • Linear regression is the machine learning algorithm that can be used to construct a model on the dataset for analyzing a large amount of data, and the model of dataset gives the correct anticipate values of the dependent variables, the dependent variable in the regression is the leading element when we are trying to understand the anticipated value and also a directory of the dataset which can accommodate the test data for linear regression is called as a regression.
  • The linear regression is maybe the most familiar and recognizable algorithm in statistics and in machine learning; basically, the linear regression is come out for the statistic field, but after further studies, it as a model while understanding the relationship between the input numerical variable and output numerical variable it has been taken by the machine learning algorithm, the relationship between the variables may be positive or negative in nature in which the positive relationship can happen when both the variables that are independent variables and dependent variables increases in a graphical manner and the negative relationship happens when the dependent variable decreases and independent variable increases.
  • Linear regression has two types: simple linear regression, which is necessary to give anticipate response to the values using its simple feature, and multiple linear regressions, which are used when having a large amount of data to predict the response value by using two or more features of it.

Basics of Linear Regression and Implementation

In the basics of linear regression anticipates the one variable from the second variable. The criteria variables it uses is the predicted variable when we are trying to anticipate the one variable. It is called simple regression, and when we are trying to anticipate one or more variables, it is called multiple linear regression. The dataset model have some features to make the dataset flexible and powerful when we implement a simple linear regression; we have to consider that two variables are linearly related and in the response of it gives the accurate value as per its features if we have dataset m and n with values of response for each value in n in response for values in m.

If m as a m = [m_1, m_2,……,m_n] and n as a n = [n_1,n_2,…….n_n]

While this example is about to find the n number of observations, when we plot the graph between these, then we will have to find the best line which is fitted to find the predicted value.

How to Use Dataset for Linear Regression?

  • When we have multiple input variables, then we can use the multiple linear regression techniques and also we can use different techniques to perform linear regression on the dataset, as we know the linear regression technique is used to find the linear relationship between the selected values and to find the one or more anticipated values.
  • In machine learning, linear regression is the statistical model that can come under the class of supervised learning algorithm, and we can use this algorithm which is not used to predict the output from different logistic regression but is used for forecasting the values which have a separate output which can happen in the classification in machine learning.
  • Let us see an example that we have a dataset of patients who are diagnosed for having blood pressure with their ages and respective weight for each patient and from this; we want to anticipate or predict the new patients which will come for the blood pressure problem so such type of data we need to put in a table format so in linear regression the first table of data is called as a dataset of independent variables because that variable can be explained and we can match that variables with the predicted variables and the predicted dataset will be called as a dataset of dependent variables because this variable can explain with the input variables like age and weight in our given an example.

Example of Dataset for Linear Regression

Different examples are mentioned below:

Start Your Free Data Science Course

Hadoop, Data Science, Statistics & others

Python example for simple linear regression.

Code:

from __future__ import division
import numpy as np
import matplotlib.pyplot as plt
import pandas as pd
def estimate_coef(x, y):
n = np.size(x)
m_x = np.mean(x)
m_y = np.mean(y)
SS_xy = np.sum(y*x) - n*m_y*m_x
SS_xx = np.sum(x*x) - n*m_x*m_x
b_1 = SS_xy / SS_xx
b_0 = m_y - b_1*m_x
return (b_0, b_1)
def plot_regression_line(x, y, b):
plt.scatter(x, y, color = "m",
marker = "o", s = 30)
y_pred = b[0] + b[1]*x
plt.plot(x, y_pred, color = "g")
plt.xlabel('x')
plt.ylabel('y')
plt.show()
def main():
x = np.array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])
y = np.array([1, 3, 2, 5, 7, 8, 8, 9, 10, 12])
b = estimate_coef(x, y)
print("Estimated coefficients:\nb_0 = {} \
\nb_1 = {}".format(b[0], b[1]))
plot_regression_line(x, y, b)
if __name__ == "__main__":
main()

Output:

Dataset for Linear Regression

Above is the example of implementing the simple linear regression in python to find anticipated value.

All in One Data Science Bundle(360+ Courses, 50+ projects)
Python TutorialMachine LearningAWSArtificial Intelligence
TableauR ProgrammingPowerBIDeep Learning
Price
View Courses
360+ Online Courses | 50+ projects | 1500+ Hours | Verifiable Certificates | Lifetime Access
4.7 (86,294 ratings)

Conclusion

In this article, we conclude that the linear regression model can be created by using the linear and the non-linear relationship between the dependent and independent variables; also, we have seen some points, so if anyone wants to understand the concept of the dataset for linear regression then this article will be definitely helpful.

Recommended Articles

This is a guide to Dataset for Linear Regression. Here we discuss the introduction, basics of linear regression and implementation, use & example. You may also have a look at the following articles to learn more –

  1. Machine Learning Datasets
  2. Spark Dataset
  3. Database Security
  4. Teradata Qualify
Popular Course in this category
Machine Learning Training (20 Courses, 29+ Projects)
  19 Online Courses |  29 Hands-on Projects |  178+ Hours |  Verifiable Certificate of Completion
4.7
Price

View Course

Related Courses

Deep Learning Training (18 Courses, 24+ Projects)4.9
Artificial Intelligence AI Training (5 Courses, 2 Project)4.8
0 Shares
Share
Tweet
Share
Primary Sidebar
Footer
About Us
  • Blog
  • Who is EDUCBA?
  • Sign Up
  • Live Classes
  • Corporate Training
  • Certificate from Top Institutions
  • Contact Us
  • Verifiable Certificate
  • Reviews
  • Terms and Conditions
  • Privacy Policy
  •  
Apps
  • iPhone & iPad
  • Android
Resources
  • Free Courses
  • Database Management
  • Machine Learning
  • All Tutorials
Certification Courses
  • All Courses
  • Data Science Course - All in One Bundle
  • Machine Learning Course
  • Hadoop Certification Training
  • Cloud Computing Training Course
  • R Programming Course
  • AWS Training Course
  • SAS Training Course

ISO 10004:2018 & ISO 9001:2015 Certified

© 2022 - EDUCBA. ALL RIGHTS RESERVED. THE CERTIFICATION NAMES ARE THE TRADEMARKS OF THEIR RESPECTIVE OWNERS.

EDUCBA
Free Data Science Course

SPSS, Data visualization with Python, Matplotlib Library, Seaborn Package

*Please provide your correct email id. Login details for this Free course will be emailed to you

By signing up, you agree to our Terms of Use and Privacy Policy.

EDUCBA Login

Forgot Password?

By signing up, you agree to our Terms of Use and Privacy Policy.

EDUCBA
Free Data Science Course

Hadoop, Data Science, Statistics & others

*Please provide your correct email id. Login details for this Free course will be emailed to you

By signing up, you agree to our Terms of Use and Privacy Policy.

EDUCBA

*Please provide your correct email id. Login details for this Free course will be emailed to you

By signing up, you agree to our Terms of Use and Privacy Policy.

Let’s Get Started

By signing up, you agree to our Terms of Use and Privacy Policy.

This website or its third-party tools use cookies, which are necessary to its functioning and required to achieve the purposes illustrated in the cookie policy. By closing this banner, scrolling this page, clicking a link or continuing to browse otherwise, you agree to our Privacy Policy

Loading . . .
Quiz
Question:

Answer:

Quiz Result
Total QuestionsCorrect AnswersWrong AnswersPercentage

Explore 1000+ varieties of Mock tests View more