EDUCBA Logo

EDUCBA

MENUMENU
  • Explore
    • EDUCBA Pro
    • PRO Bundles
    • Featured Skills
    • New & Trending
    • Fresh Entries
    • Finance
    • Data Science
    • Programming and Dev
    • Excel
    • Marketing
    • HR
    • PDP
    • VFX and Design
    • Project Management
    • Exam Prep
    • All Courses
  • Blog
  • Enterprise
  • Free Courses
  • Log in
  • Sign Up
Home Data Science Data Science Tutorials Data Structures Tutorial B+ Tree Deletion
 

B+ Tree Deletion

B+ Tree Deletion

Definition of B+ Tree Deletion

B+ Tree is an extension of the B tree that allows more efficient insertion, deletion, and other operations than B tree. Deleting an element in the B+ tree includes three operations Searching, Deleting, and Balancing. First, we will search for the node that is to be deleted and performing a deletion operation on it then we will balance the tree as the final step.

 

 

Algorithm of B+ Tree Deletion

Step 1: Take the input in a key-value and search for the leaf node containing the key value.

Watch our Demo Courses and Videos

Valuation, Hadoop, Excel, Mobile Apps, Web Development & many more.

Step 2: If the key is found, remove that entry from the leaf

• If the leaf meets “Half Full criteria” then it is done
• otherwise, the leaf has some data entries.

Step 3: If the leaf’s right sibling can have an entry. then move the very smallest entry to that right sibling of the leaf.

• Otherwise, if the leaf’s left sibling can take an entry, then move the smallest node to that left sibling of the leaf.

• If it doesn’t meet the above two criteria, merge both leaf and a sibling.

Step 4: While merging, it recursively deletes the entry which is pointing to the leaf or sibling from the parent.

Step 5: Merging could make a change in the height of the tree.

Explanation with an Example

Let us consider a B+ tree as shown below.

B+ Tree Deletion 1

Delete 65 from the above B+ tree

B+ Tree Deletion 2

Delete 70 from the above B+ tree

output 1

output 2

Source Code

import math
# Node creation
class Node:
def __init__(self, order):
self.order = order
self.values = [] self.keys = [] self.nextKey = None
self.parent = None
self.check_leaf = False
# Insert at the leaf
def insert_at_leaf(self, leaf, value, key):
if (self.values):
temp1 = self.values
for i in range(len(temp1)):
if (value == temp1[i]):
self.keys[i].append(key)
break
elif (value < temp1[i]):
self.values = self.values[:i] + [value] + self.values[i:] self.keys = self.keys[:i] + [[key]] + self.keys[i:] break
elif (i + 1 == len(temp1)):
self.values.append(value)
self.keys.append([key])
break
else:
self.values = [value] self.keys = [[key]] # B plus tree
class BplusTree:
def __init__(self, order):
self.root = Node(order)
self.root.check_leaf = True
# Insert operation
def insert(self, value, key):
value = str(value)
old_node = self.search(value)
old_node.insert_at_leaf(old_node, value, key)
if (len(old_node.values) == old_node.order):
node1 = Node(old_node.order)
node1.check_leaf = True
node1.parent = old_node.parent
mid = int(math.ceil(old_node.order / 2)) - 1
node1.values = old_node.values[mid + 1:] node1.keys = old_node.keys[mid + 1:] node1.nextKey = old_node.nextKey
old_node.values = old_node.values[:mid + 1] old_node.keys = old_node.keys[:mid + 1] old_node.nextKey = node1
self.insert_in_parent(old_node, node1.values[0], node1)
# Search operation for different operations
def search(self, value):
current_node = self.root
while(current_node.check_leaf == False):
temp2 = current_node.values
for i in range(len(temp2)):
if (value == temp2[i]):
current_node = current_node.keys[i + 1] break
elif (value < temp2[i]):
current_node = current_node.keys[i] break
elif (i + 1 == len(current_node.values)):
current_node = current_node.keys[i + 1] break
return current_node
# Find the node
def find(self, value, key):
l = self.search(value)
for i, item in enumerate(l.values):
if item == value:
if key in l.keys[i]:
return True
else:
return False
return False
# Inserting at the parent
def insert_in_parent(self, n, value, ndash):
if (self.root == n):
rootNode = Node(n.order)
rootNode.values = [value] rootNode.keys = [n, ndash] self.root = rootNode
n.parent = rootNode
ndash.parent = rootNode
return
parentNode = n.parent
temp3 = parentNode.keys
for i in range(len(temp3)):
if (temp3[i] == n):
parentNode.values = parentNode.values[:i] + \
[value] + parentNode.values[i:] parentNode.keys = parentNode.keys[:i +
1] + [ndash] + parentNode.keys[i + 1:] if (len(parentNode.keys) > parentNode.order):
parentdash = Node(parentNode.order)
parentdash.parent = parentNode.parent
mid = int(math.ceil(parentNode.order / 2)) - 1
parentdash.values = parentNode.values[mid + 1:] parentdash.keys = parentNode.keys[mid + 1:] value_ = parentNode.values[mid] if (mid == 0):
parentNode.values = parentNode.values[:mid + 1] else:
parentNode.values = parentNode.values[:mid] parentNode.keys = parentNode.keys[:mid + 1] for j in parentNode.keys:
j.parent = parentNode
for j in parentdash.keys:
j.parent = parentdash
self.insert_in_parent(parentNode, value_, parentdash)
# Delete a node
def delete(self, value, key):
node_ = self.search(value)
temp = 0
for i, item in enumerate(node_.values):
if item == value:
temp = 1
if key in node_.keys[i]:
if len(node_.keys[i]) > 1:
node_.keys[i].pop(node_.keys[i].index(key))
elif node_ == self.root:
node_.values.pop(i)
node_.keys.pop(i)
else:
node_.keys[i].pop(node_.keys[i].index(key))
del node_.keys[i] node_.values.pop(node_.values.index(value))
self.deleteEntry(node_, value, key)
else:
print("Value not in Key")
return
if temp == 0:
print("Value not in Tree")
return
# Delete an entry
def deleteEntry(self, node_, value, key):
if not node_.check_leaf:
for i, item in enumerate(node_.keys):
if item == key:
node_.keys.pop(i)
break
for i, item in enumerate(node_.values):
if item == value:
node_.values.pop(i)
break
if self.root == node_ and len(node_.keys) == 1:
self.root = node_.keys[0] node_.keys[0].parent = None
del node_
return
elif (len(node_.keys) < int(math.ceil(node_.order / 2)) and node_.check_leaf == False) or (len(node_.values) < int(math.ceil((node_.order - 1) / 2)) and node_.check_leaf == True):
is_predecessor = 0
parentNode = node_.parent
PrevNode = -1
NextNode = -1
PrevK = -1
PostK = -1
for i, item in enumerate(parentNode.keys):
if item == node_:
if i > 0:
PrevNode = parentNode.keys[i - 1] PrevK = parentNode.values[i - 1] if i < len(parentNode.keys) - 1:
NextNode = parentNode.keys[i + 1] PostK = parentNode.values[i] if PrevNode == -1:
ndash = NextNode
value_ = PostK
elif NextNode == -1:
is_predecessor = 1
ndash = PrevNode
value_ = PrevK
else:
if len(node_.values) + len(NextNode.values) < node_.order:
ndash = NextNode
value_ = PostK
else:
is_predecessor = 1
ndash = PrevNode
value_ = PrevK
if len(node_.values) + len(ndash.values) < node_.order:
if is_predecessor == 0:
node_, ndash = ndash, node_
ndash.keys += node_.keys
if not node_.check_leaf:
ndash.values.append(value_)
else:
ndash.nextKey = node_.nextKey
ndash.values += node_.values
if not ndash.check_leaf:
for j in ndash.keys:
j.parent = ndash
self.deleteEntry(node_.parent, value_, node_)
del node_
else:
if is_predecessor == 1:
if not node_.check_leaf:
ndashpm = ndash.keys.pop(-1)
ndashkm_1 = ndash.values.pop(-1)
node_.keys = [ndashpm] + node_.keys
node_.values = [value_] + node_.values
parentNode = node_.parent
for i, item in enumerate(parentNode.values):
if item == value_:
p.values[i] = ndashkm_1
break
else:
ndashpm = ndash.keys.pop(-1)
ndashkm = ndash.values.pop(-1)
node_.keys = [ndashpm] + node_.keys
node_.values = [ndashkm] + node_.values
parentNode = node_.parent
for i, item in enumerate(p.values):
if item == value_:
parentNode.values[i] = ndashkm
break
else:
if not node_.check_leaf:
ndashp0 = ndash.keys.pop(0)
ndashk0 = ndash.values.pop(0)
node_.keys = node_.keys + [ndashp0] node_.values = node_.values + [value_] parentNode = node_.parent
for i, item in enumerate(parentNode.values):
if item == value_:
parentNode.values[i] = ndashk0
break
else:
ndashp0 = ndash.keys.pop(0)
ndashk0 = ndash.values.pop(0)
node_.keys = node_.keys + [ndashp0] node_.values = node_.values + [ndashk0] parentNode = node_.parent
for i, item in enumerate(parentNode.values):
if item == value_:
parentNode.values[i] = ndash.values[0] break
if not ndash.check_leaf:
for j in ndash.keys:
j.parent = ndash
if not node_.check_leaf:
for j in node_.keys:
j.parent = node_
if not parentNode.check_leaf:
for j in parentNode.keys:
j.parent = parentNode
# Print the tree
def printTree(tree):
lst = [tree.root] level = [0] leaf = None
flag = 0
lev_leaf = 0
node1 = Node(str(level[0]) + str(tree.root.values))
while (len(lst) != 0):
x = lst.pop(0)
lev = level.pop(0)
if (x.check_leaf == False):
for i, item in enumerate(x.keys):
print(item.values)
else:
for i, item in enumerate(x.keys):
print(item.values)
if (flag == 0):
lev_leaf = lev
leaf = x
flag = 1
record_len = 3
bplustree = BplusTree(record_len)
bplustree.insert('5', '33')
bplustree.insert('15', '21')
bplustree.insert('25', '31')
bplustree.insert('35', '41')
bplustree.insert('45', '10')
printTree(bplustree)
print()
if(bplustree.find('5', '33')):
print("Found")
else:
print("Not found")
print()
if(bplustree.find('5', '34')):
print("Found")
else:
print("Not found")

Output:

B+ Tree Deletion 3

Time Complexity of B+ tree

  • Best Case Time Complexity

The Best case time complexity of the deletion operation of a B+ tree is the same as the searching operation in a B+ tree. So, The best case time complexity of B+ tree deletion is Θ(logn)

  • Average Case Time Complexity

The average case time complexity of B+ tree is Θ(logn). The deletion algorithm of B+ tree also takes the same time as performing search operation. So the time complexity of both search and Deletion will be equal.

  • Worst Case Time Complexity

The worst-case time complexity of B+ tree is Θ(logn).

  • Space Complexity of B+ tree

The average case space complexity and worst-case space complexity are equal in B+ tree.

The average case space complexity is Θ(n)

The best-case space complexity is Θ(n)

Application of B+ tree

  • In the B+ tree we store all the data in leaf nodes which makes the tree shorter and have more branching in these trees which reduces disk I/O. So we can implement these in Secondary storage devices.
  • By using the B+ tree, one can retrieve partial retrieval or range retrieval. Traversing through the B+ tree makes this easier

Advantages of B+ tree

  • By using disc accesses, any records can be searched and accessed very easily.
  • When compared to other trees, the height of B+ tree remains short and balanced.
  • The data in B+ tree can be accessed sequentially or directly.
  • As the data is stored in leaf nodes, it can be accessed fastly.

Conclusion

  • B+ Tree is an extension of the B tree that allows the more efficient insertion, deletion, and other operations than Btree
  • Deleting an element in the B+ tree includes three operations Searching, Deleting, and Balancing
  • If the height of the B+ tree gets shrunk it gets very complicated to continue further processes.

Recommended Articles

This is a guide to B+ Tree Deletion. Here we discuss the definition, Algorithm of B+ Tree Deletion, explanation with example with code implementation and advantages. You may also have a look at the following articles to learn more –

  1. B+ Tree in Data Structure
  2. B Tree vs B + Tree
  3. Tree Traversal Python
  4. Spanning Tree Algorithm

Primary Sidebar

Footer

Follow us!
  • EDUCBA FacebookEDUCBA TwitterEDUCBA LinkedINEDUCBA Instagram
  • EDUCBA YoutubeEDUCBA CourseraEDUCBA Udemy
APPS
EDUCBA Android AppEDUCBA iOS App
Blog
  • Blog
  • Free Tutorials
  • About us
  • Contact us
  • Log in
Courses
  • Enterprise Solutions
  • Free Courses
  • Explore Programs
  • All Courses
  • All in One Bundles
  • Sign up
Email
  • [email protected]

ISO 10004:2018 & ISO 9001:2015 Certified

© 2025 - EDUCBA. ALL RIGHTS RESERVED. THE CERTIFICATION NAMES ARE THE TRADEMARKS OF THEIR RESPECTIVE OWNERS.

EDUCBA

*Please provide your correct email id. Login details for this Free course will be emailed to you
EDUCBA

*Please provide your correct email id. Login details for this Free course will be emailed to you

EDUCBA
Free Data Science Course

Hadoop, Data Science, Statistics & others

By continuing above step, you agree to our Terms of Use and Privacy Policy.
*Please provide your correct email id. Login details for this Free course will be emailed to you
EDUCBA

*Please provide your correct email id. Login details for this Free course will be emailed to you
EDUCBA Login

Forgot Password?

Loading . . .
Quiz
Question:

Answer:

Quiz Result
Total QuestionsCorrect AnswersWrong AnswersPercentage

Explore 1000+ varieties of Mock tests View more

🚀 Limited Time Offer! - ENROLL NOW