EDUCBA

EDUCBA

MENUMENU
  • Free Tutorials
  • Free Courses
  • Certification Courses
  • 360+ Courses All in One Bundle
  • Login

Time Series Analysis

Home » Data Science » Data Science Tutorials » Data Analytics Basics » Time Series Analysis

Time Series Analysis

Introduction to Time series Analysis

Series of data points recorded over a specified period of time is called as a Time series data. Time-series analysis is a technique for analyzing time series data and extract meaningful statistical information and characteristics of the data. One of the major objectives of the analysis is to forecast future value.Extrapolation is involved when forecasting with the time series analysis which is extremely complex. But, the forecasted value along with the estimation of uncertainty associated with that can make the result extremely valuable.

Time series Analysis Example 1

Start Your Free Data Science Course

Hadoop, Data Science, Statistics & others

Time series analysis can be useful in achieving the same.

What is Time Series Analysis?

Time series analysis is a statistical method to analyse the past data within a given duration of time to forecast the future. It comprises of ordered sequence of data at equally spaced interval.To understand the time series data & the analysis let us consider an example. Consider an example of Airline Passenger data. It has the count of passenger over a period of time.

Exploratory Analysis:

The first step is to perform the exploratory analysis which is carried out by plotting a line chart of the count of passengers against time. Figure 1 shows the count of passenger on y-axis and time on x-axis where each interval can be considered as a year.

Time Series Analysis Example 2

On careful observation of the below graph following observations can be derived.

1. TREND: Increasing or decreasing pattern has been observed over a period of time. In this case, the gradually increasing underlying trend is observed. i.e. the count of passengers has increased over a period of time.

Popular Course in this category
All in One Data Science Bundle (360+ Courses, 50+ projects)360+ Online Courses | 1500+ Hours | Verifiable Certificates | Lifetime Access
4.7 (3,220 ratings)
Course Price

View Course

Related Courses
Data Scientist Training (76 Courses, 60+ Projects)Machine Learning Training (17 Courses, 27+ Projects)Cloud Computing Training (18 Courses, 5+ Projects)

2. SEASONALITY: Refers to cyclic pattern. A similar pattern that repeats after a certain interval of time. In the airline passenger example, we can observe a cyclic pattern which has a certain high & a low point which is visible in all the interval.

3. HETROSCEDASTICITY: Refers to Non-constant variance or varying deflection from the mean over a period of time. In the below plot the variance has increased continuously over a period of time.

Figure 2 shows the graph of the Airline passenger data and the decomposed components (highlighted on the left) that we discussed above. Namely:

  • Trend
  • Seasonality
  • Heteroscedasticity (Red lines show the heteroscedasticity)

Time Series Analysis Example 3

Importance of Time Series Analysis

Ample of time series data is being generated from a variety of fields. And hence the study time series analysis holds a lot of applications. Let us try to understand the importance of time series analysis in different areas.

  1. Field of Economics: Budget studies, census Analysis, etc.
  2. Field of Finance: Widely used in the field of finance such as to understand the stock market fluctuations, yield management, understand the market volatility, etc.
  3. Social Scientistà: Birth rates or death rates over a period of time and can come with the schemes in their interest.
  4. Healthcare: An epidemiologist might be interested in knowing the number of people infected over the past years. Like in the current situation the researchers might be interested in knowing the people affected by the coronavirus over a period of time. Blood pressure traced over a period of time can be used in evaluating a drug.
  5. Environmental Science: Environmental time series data can help us explain the rise in temperature over the past few years. Plot shows the temperature data over a period of time

Environmental Science Example 4

  1. Sales forecasting: Understanding the sales number forecasting, the company’s performance. The plot shows a earning with respect to time.

Sales forecasting Example 5

Time Series Analysis is needed to predict the future based on past data values which are mostly dependent on time. It is used by researchers and executives to predict sales, price, policies, and production.

Why we need the Time Series Analysis?

Time series data collected over different points in time breach the assumption of the conventional statistical model as correlation exists between the adjacent data points. This characteristic of the time series data breaches one of the major assumptions that the adjacent data points are independent and identically distributed. This gives rise to the need of a systematic approach to study the time series data which can help us answer the statistical and mathematical questions that come into the picture due to time correlation that exists.

Time series analysis holds a wide range of applications is it statistics, economics, geography, bioinformatics, neuroscience. The common link between all of them is to come up with a sophisticated technique that can be used to model data over a given period of time where the neighboring information is dependent.

In time series, Time is the independent variable and the goal is forecasting.

Some of the main reasons for carrying out time series analysis can be concluded below:

  1. Features: To interpret features. Features like Trend (increasing or decreasing), Seasonality (cyclic pattern) & variability (Heteroscedasticity)
  2. Forecasting: This is one of the most significant reasons for carrying out Time series analysis. For Example, Time series can help us predict the Stock Price. As we would not only be interested in knowing if the price will increase or decrease but also the amount by which it will increase or decrease.
  3. Inferences: As we all know it is difficult to predict the exact future. So the predicted value along with the margin of error (uncertainty) can be treated as a better outcome. And with the help of time series analysis, we can draw the inference like confidence interval & hypothesis test on model parameters

Conclusion

The primitive decisions were made on the basis of gut feelings and common sense. A systematic and collaborative approach to make a decision supported by the data is a real game-changer. With a wide range of applications. It has become one of the most important areas of study. It plays a crucial role in understanding the underlying structure of the time series data with an aid in extracting meaningful statistical & characteristic information and henceforth the decision making backed by the data.

Recommended Articles

This is a guide to Time Series Analysis. Here we discuss the Introduction and what is Time Series Analysis and why we need it along with Importance. You can also go through our suggested articles to learn more –

  1. Top 8 Free Data Analysis Tools
  2. Introduction to Types of Data Analysis Techniques
  3. Data Analytics vs Data Analysis – Top Differences
  4. Types of Data Analysis | Various Methodology

All in One Data Science Bundle (360+ Courses, 50+ projects)

360+ Online Courses

1500+ Hours

Verifiable Certificates

Lifetime Access

Learn More

0 Shares
Share
Tweet
Share
Primary Sidebar
Data Analytics Basics
  • Basics
    • What is Natural Language Processing
    • What Is Apache
    • What is Business Intelligence
    • Predictive Modeling
    • What is NoSQL Database
    • Types of NoSQL Databases
    • What is Cluster Computing
    • Uses of Salesforce
    • The Beginners Guide to Startup Analytics
    • Analytics Software is Hiding From You
    • Real Time Analytics
    • Lean Analytics
    • Important Elements of Mudbox Software
    • Business Intelligence Tools (Benefits)
    • Mechatronics Projects
    • Know about A Business Analyst
    • Flexbox Essentials For Beginners
    • Predictive Analytics Tool
    • Data Modeling Tools (Free)
    • Modern Data Integration
    • Crowd Sourcing Data
    • Build a Data Supply Chain
    • What is Minitab
    • Sqoop Commands
    • Pig Commands
    • What is Apache Flink
    • What is Predictive Analytics
    • What is Business Analytics
    • What is Pig
    • What is Fuzzy Logic
    • What is Apache Tomcat
    • Talend Data Integration
    • Talend Open Studio
    • How MapReduce Works
    • Types of Data Model
    • Test Data Generation
    • Apache Flume
    • NoSQL Data Models
    • Advantages of NoSQL
    • What is Juypter Notebook
    • What is CentOS
    • What is MuleSoft
    • MapReduce Algorithms
    • What is Dropbox
    • Pandas.Dropna()
    • Salesforce IoT Cloud
    • Talend Tools
    • Data Integration Tool
    • Career in Business Analytics
    • Marketing Analytics For Dummies
    • Risk Analytics Helps in Risk management
    • Salesforce Certification
    • Tips to Become Certified Salesforce Admin
    • Customer Analytics Techniques
    • What is Data Engineering?
    • Business Analysis Tools
    • Business Analytics Techniques
    • Smart City Application
    • COBOL Data Types
    • Business Intelligence Dashboard
    • What is MDM?
    • What is Logstash?
    • CAP Theorem
    • Pig Architecture
    • Pig Data Types
    • KMP Algorithm
    • What is Metadata?
    • Data Modelling Tools
    • Sqoop Import
    • Apache Solr
    • What is Impala?
    • Impala Database
    • What is Digital Image?
    • What is Kibana?
    • Kibana Visualization
    • Kibana Logstash
    • Kibana_query
    • Kibana Reporting
    • Kibana Alert
    • Longitudinal Data Analysis
    • Metadata Management Tools
    • Time Series Analysis
    • Types of Arduino
    • Arduino Shields
    • What is Arduino UNO?
    • Arduino Sensors
    • Arduino Boards
    • Arduino Application
    • 8085 Architecture
    • Dynatrace Competitors
    • Data Migration Tools
    • Likert Scale Data Analysis
    • Predictive Analytics Techniques
    • Data Governance
    • What is RTK
    • Data Virtualization
    • Knowledge Engineering
    • Data Dictionaries
    • Types of Dimensions
    • What is Google Chrome?
    • Embedded Systems Architecture
    • Data Collection Tools

Related Courses

Data Science Certification

Online Machine Learning Training

Cloud Computing Certification

Footer
About Us
  • Blog
  • Who is EDUCBA?
  • Sign Up
  • Corporate Training
  • Certificate from Top Institutions
  • Contact Us
  • Verifiable Certificate
  • Reviews
  • Terms and Conditions
  • Privacy Policy
  •  
Apps
  • iPhone & iPad
  • Android
Resources
  • Free Courses
  • Database Management
  • Machine Learning
  • All Tutorials
Certification Courses
  • All Courses
  • Data Science Course - All in One Bundle
  • Machine Learning Course
  • Hadoop Certification Training
  • Cloud Computing Training Course
  • R Programming Course
  • AWS Training Course
  • SAS Training Course

© 2020 - EDUCBA. ALL RIGHTS RESERVED. THE CERTIFICATION NAMES ARE THE TRADEMARKS OF THEIR RESPECTIVE OWNERS.

EDUCBA
Free Data Science Course

Hadoop, Data Science, Statistics & others

*Please provide your correct email id. Login details for this Free course will be emailed to you
Book Your One Instructor : One Learner Free Class

Let’s Get Started

This website or its third-party tools use cookies, which are necessary to its functioning and required to achieve the purposes illustrated in the cookie policy. By closing this banner, scrolling this page, clicking a link or continuing to browse otherwise, you agree to our Privacy Policy

EDUCBA

*Please provide your correct email id. Login details for this Free course will be emailed to you
EDUCBA Login

Forgot Password?

EDUCBA
Free Data Science Course

Hadoop, Data Science, Statistics & others

*Please provide your correct email id. Login details for this Free course will be emailed to you

Special Offer - All in One Data Science Bundle (360+ Courses, 50+ projects) Learn More