EDUCBA

EDUCBA

MENUMENU
  • Free Tutorials
  • Free Courses
  • Certification Courses
  • 360+ Courses All in One Bundle
  • Login

PyTorch Tensors

Home » Data Science » Data Science Tutorials » Machine Learning Tutorial » PyTorch Tensors

PyTorch Tensors

Introduction to PyTorch Tensors

The following article provides an outline for PyTorch Tensors. PyTorch was released as an open-source framework in 2017 by Facebook, and it has been very popular among developers and the research community. PyTorch has made building deep neural network models by providing easy programming and faster computation. However, PyTorch’s strong feature is providing Tensors. Tensors are defined as single dimensions or a matrix of a multi-dimensional array containing an element of single data types.

Tensors are also used in the Tensorflow framework, which Google released. NumPy Arrays in Python are basically just tensors processed by using GPUs or TPUs for training neural network models. PyTorch has libraries included in it for calculating gradient descent for feed-forward networks as well as back-propagation. PyTorch has more support to the Python libraries like NumPy and Scipy compared to other frameworks like Tensorflow.

Start Your Free Data Science Course

Hadoop, Data Science, Statistics & others

PyTorch Tensors Dimensions

  • In any linear algebraic operations, the user may have data in vector, matrix or N-dimensional form. Vector is basically a single-dimensional tensor, Matrix is two-dimensional tensors, and an Image is a 3-dimensional tensor with RGB as a dimension. PyTorch tensor is a multi-dimensional array, same as NumPy and also it acts as a container or storage for the number. To create any neural network for a deep learning model, all linear algebraic operations are performed on Tensors to transform one tensor to new tensors.
  • PyTorch tensors have been developed even though there was NumPy array offering multi-dimensional array property, but PyTorch has the advantage of running on top of GPU and also tensors can integrate with Python libraries like NumPy, Scikit learns and pandas. Tensors store the data in the form of an array, and records can be accessed by using an index. Tensors represent many types of data which have arbitrary dimensions like images, audio or time-series data.

Example:

Code:

import torch
tensor_1 = torch.rand(3,3)

Here random tensor of size 3*3 is created.

How to Create PyTorch Tensors Using Various Methods

Let’s create a different PyTorch tensor before creating any tensor import torch class using the below command:

Code:

import torch

1. Create tensor from pre-existing data in list or sequence form using torch class.

It is a 2*3 matrix with values as 0 and 1.

Syntax:

torch.tensor(data, dtype=None, device=None, requires_grad=False, pin_memory=False)

Code:

import torch
tensor_b = torch.Tensor([[0,0,0], [1,1,1]])
tensor_b

Output:

PyTorch Tensors 1

2. Create n*m tensor from random function in the torch.

Popular Course in this category
Sale
Machine Learning Training (19 Courses, 29+ Projects)19 Online Courses | 29 Hands-on Projects | 178+ Hours | Verifiable Certificate of Completion | Lifetime Access
4.7 (13,865 ratings)
Course Price

View Course

Related Courses
Deep Learning Training (16 Courses, 24+ Projects)Artificial Intelligence Training (5 Courses, 2 Project)

Syntax:

torch.randn(data_size, dtype=input.dtype, layout=input.layout, device=input.device)

Code:

import torch
tensor_a = torch.rand((3, 3))
tensor_a

Output:

PyTorch Tensors 2

3. Creating a tensor from numerical types using functions such as ones and zeros.

Syntax:

torch.zeros(data_size, dtype=input.dtype, layout=input.layout, device=input.device)

Code:

tensor_d = torch.zeros(3, 3)
tensor_d

Output:

PyTorch Tensors 3

In the above, tensor .zeros() is used to create a 3*3 matrix with all the values as ‘0’ (zero).

4. Creating a PyTorch tensor from the numpy tensor.

To create a tensor from numpy, create an array using numpy and then convert it to tensor using the .as_tensor keyword.

Syntax:

torch.as_tensor(data, dtype=None, device=None)

Code:

import numpy
arr = numpy.array([0, 1, 2, 4])
tensor_e = torch.as_tensor(arr)
tensor_e

Output:

from the numpy

5. Creating new tensors by applying transformation on existing tensors.

Here is the basic tensor operation to perform the matrix product and get a new tensor.

Code:

tensor_e = torch.Tensor([[1, 2], [7, 8]])
tensor_f = torch.Tensor([[10], [20]])
tensor_mat = tensor_e.mm(tensor_f)
tensor_mat

Output:

applying transformation on existing

Parameters:

Here is the list and information on parameters used in syntax:

  • data: Data for tensors.
  • dtype: Datatype of the returned tensor.
  • device: Device used is CPU or CUDA device with returned tensor.
  • requires_grad: It is a boolean data type with values as True or False to record automatic gradient on returned tensor.
  • data_size: Data shape of the input tensor.
  • pin_memory: If the pin_memory is set to Truly returned tensor will have pinned memory.

See below jupyter notebook for the above operation to create tensors.

Importance of Tensors in PyTorch

Tensor is the building block of the PyTorch libraries with a matrix-like structure. Tensors are important in PyTorch framework as it supports to perform a mathematical operation on the data.

Following are some of the key important points of tensors in PyTorch:

  • Tensors are important in the PyTorch as it is a fundamental data structure and all the neural network models are built using tensors as it has the ability to perform linear algebra operations
  • Tensors are similar to numpy arrays, but they are way more powerful than the numpy array as They perform their computation GPU or CPU. Hence, It is way more faster than the numpy library of python.
  • It offers seamless interoperability with Python libraries so that the programmer can easily use Sci-kit, SciPy libraries with tensors. Also, using functions like as_tensors or from_numpy programmer can easily convert the numpy array to PyTorch tensors.
  • One of the important features offered by tensor is it can store track of all the operations performed on them, which helps to compute the gradient descent of output; this can be done using Autograd functionality of tensors.
  • It is a multi-dimensional array which holds data for Images that can be converted into a 3-dimensional array based on its color like RGB (Red, Green and Blue); also, it holds Audio data or Time series data; any unstructured data can be addressed using tensors.

Conclusion

To learn PyTorch framework for building deep learning models for computer vision, Natural language processing or reinforcement learning. In the above tutorial, a programmer can get an idea of how useful and simple it is to learn and implement tensors in PyTorch. Of course, tensors can be used in PyTorch as well as Tensorflow. Still, the basic idea behind using tensors stays the same: using GPU or CPU with Cuda cores to process data faster which one framework to use for building models is developers decisions. Still, the above articles give a clear idea about tensor in the PyTorch.

Recommended Articles

This is a guide to PyTorch Tensors. Here we discuss the introduction, dimensions, how to create PyTorch tensors using various methods and importance. You may also have a look at the following articles to learn more –

  1. PyTorch Versions
  2. torch.nn Module
  3. Tensorflow Basics
  4. Introduction to Tensorflow

All in One Data Science Bundle (360+ Courses, 50+ projects)

360+ Online Courses

50+ projects

1500+ Hours

Verifiable Certificates

Lifetime Access

Learn More

0 Shares
Share
Tweet
Share
Primary Sidebar
Machine Learning Tutorial
  • PyTorch
    • PyTorch Tensors
    • What is PyTorch?
    • PyTorch MSELoss()
    • PyTorch NLLLOSS
    • PyTorch MaxPool2d
    • PyTorch Pretrained Models
    • PyTorch Squeeze
    • PyTorch Reinforcement Learning
    • PyTorch zero_grad
    • PyTorch norm
    • PyTorch VAE
    • PyTorch Early Stopping
    • PyTorch requires_grad
    • PyTorch MNIST
    • PyTorch Conv2d
    • Dataset Pytorch
    • PyTorch tanh
    • PyTorch bmm
    • PyTorch profiler
    • PyTorch unsqueeze
    • PyTorch adam
    • PyTorch backward
    • PyTorch concatenate
    • PyTorch Embedding
    • PyTorch Tensor to NumPy
    • PyTorch Normalize
    • PyTorch ReLU
    • PyTorch Autograd
    • PyTorch Transpose
    • PyTorch Object Detection
    • PyTorch Autoencoder
    • PyTorch Loss
    • PyTorch repeat
    • PyTorch gather
    • PyTorch sequential
    • PyTorch U-NET
    • PyTorch Sigmoid
    • PyTorch Neural Network
    • PyTorch Quantization
    • PyTorch Ignite
    • PyTorch Versions
    • PyTorch TensorBoard
    • PyTorch Dropout
    • PyTorch Model
    • PyTorch optimizer
    • PyTorch ResNet
    • PyTorch CNN
    • PyTorch Detach
    • Single Layer Perceptron
    • PyTorch vs Keras
    • torch.nn Module
  • Basic
    • Introduction To Machine Learning
    • What is Machine Learning?
    • Uses of Machine Learning
    • Applications of Machine Learning
    • Naive Bayes in Machine Learning
    • Dataset Labelling
    • DataSet Example
    • Dataset ZFS
    • Careers in Machine Learning
    • What is Machine Cycle?
    • Machine Learning Feature
    • Machine Learning Programming Languages
    • What is Kernel in Machine Learning
    • Machine Learning Tools
    • Machine Learning Models
    • Machine Learning Platform
    • Machine Learning Libraries
    • Machine Learning Life Cycle
    • Machine Learning System
    • Machine Learning Datasets
    • Top 7 Useful Benefits Of Machine Learning Certifications
    • Machine Learning Python vs R
    • Optimization for Machine Learning
    • Types of Machine Learning
    • Machine Learning Methods
    • Machine Learning Software
    • Machine Learning Techniques
    • Machine Learning Feature Selection
    • Ensemble Methods in Machine Learning
    • Support Vector Machine in Machine Learning
    • Decision Making Techniques
    • Restricted Boltzmann Machine
    • Regularization Machine Learning
    • What is Regression?
    • What is Linear Regression?
    • Dataset for Linear Regression
    • Decision tree limitations
    • What is Decision Tree?
    • What is Random Forest
  • Algorithms
    • Machine Learning Algorithms
    • Apriori Algorithm in Machine Learning
    • Types of Machine Learning Algorithms
    • Bayes Theorem
    • AdaBoost Algorithm
    • Classification Algorithms
    • Clustering Algorithm
    • Gradient Boosting Algorithm
    • Mean Shift Algorithm
    • Hierarchical Clustering Algorithm
    • Hierarchical Clustering Agglomerative
    • What is a Greedy Algorithm?
    • What is Genetic Algorithm?
    • Random Forest Algorithm
    • Nearest Neighbors Algorithm
    • Weak Law of Large Numbers
    • Ray Tracing Algorithm
    • SVM Algorithm
    • Naive Bayes Algorithm
    • Neural Network Algorithms
    • Boosting Algorithm
    • XGBoost Algorithm
    • Pattern Searching
    • Loss Functions in Machine Learning
    • Decision Tree in Machine Learning
    • Hyperparameter Machine Learning
    • Unsupervised Machine Learning
    • K- Means Clustering Algorithm
    • KNN Algorithm
    • Monty Hall Problem
  • Supervised
    • What is Supervised Learning
    • Supervised Machine Learning
    • Supervised Machine Learning Algorithms
    • Perceptron Learning Algorithm
    • Simple Linear Regression
    • Polynomial Regression
    • Multivariate Regression
    • Regression in Machine Learning
    • Hierarchical Clustering Analysis
    • Linear Regression Analysis
    • Support Vector Regression
    • Multiple Linear Regression
    • Linear Algebra in Machine Learning
    • Statistics for Machine Learning
    • What is Regression Analysis?
    • Clustering Methods
    • Backward Elimination
    • Ensemble Techniques
    • Bagging and Boosting
    • Linear Regression Modeling
    • What is Reinforcement Learning
  • Classification
    • Kernel Methods in Machine Learning
    • Clustering in Machine Learning
    • Machine Learning Architecture
    • Automation Anywhere Architecture
    • Machine Learning C++ Library
    • Machine Learning Frameworks
    • Data Preprocessing in Machine Learning
    • Data Science Machine Learning
    • Classification of Neural Network
    • Neural Network Machine Learning
    • What is Convolutional Neural Network?
    • Single Layer Neural Network
    • Kernel Methods
    • Forward and Backward Chaining
    • Forward Chaining
    • Backward Chaining
  • Deep Learning
    • What Is Deep learning
    • Overviews Deep Learning
    • Application of Deep Learning
    • Careers in Deep Learnings
    • Deep Learning Frameworks
    • Deep Learning Model
    • Deep Learning Algorithms
    • Deep Learning Technique
    • Deep Learning Networks
    • Deep Learning Libraries
    • Deep Learning Toolbox
    • Types of Neural Networks
    • Convolutional Neural Networks
    • Create Decision Tree
    • Deep Learning for NLP
    • Caffe Deep Learning
    • Deep Learning with TensorFlow
  • RPA
    • What is RPA
    • What is Robotics?
    • Benefits of RPA
    • RPA Applications
    • Types of Robots
    • RPA Tools
    • Line Follower Robot
    • What is Blue Prism?
    • RPA vs BPM
  • UiPath
    • What is UiPath
    • UiPath Action Center
    • UiPath?Orchestrator
    • UiPath web automation
    • UiPath Orchestrator API
    • UiPath Delay
    • UiPath Careers
    • UiPath Architecture
    • UiPath version
    • Uipath Reframework
    • UiPath Studio
  • Interview Questions
    • Deep Learning Interview Questions And Answer
    • Machine Learning Cheat Sheet

Related Courses

Machine Learning Training

Deep Learning Training

Artificial Intelligence Training

Footer
About Us
  • Blog
  • Who is EDUCBA?
  • Sign Up
  • Live Classes
  • Corporate Training
  • Certificate from Top Institutions
  • Contact Us
  • Verifiable Certificate
  • Reviews
  • Terms and Conditions
  • Privacy Policy
  •  
Apps
  • iPhone & iPad
  • Android
Resources
  • Free Courses
  • Database Management
  • Machine Learning
  • All Tutorials
Certification Courses
  • All Courses
  • Data Science Course - All in One Bundle
  • Machine Learning Course
  • Hadoop Certification Training
  • Cloud Computing Training Course
  • R Programming Course
  • AWS Training Course
  • SAS Training Course

© 2022 - EDUCBA. ALL RIGHTS RESERVED. THE CERTIFICATION NAMES ARE THE TRADEMARKS OF THEIR RESPECTIVE OWNERS.

EDUCBA

*Please provide your correct email id. Login details for this Free course will be emailed to you

By signing up, you agree to our Terms of Use and Privacy Policy.

This website or its third-party tools use cookies, which are necessary to its functioning and required to achieve the purposes illustrated in the cookie policy. By closing this banner, scrolling this page, clicking a link or continuing to browse otherwise, you agree to our Privacy Policy

EDUCBA Login

Forgot Password?

By signing up, you agree to our Terms of Use and Privacy Policy.

Let’s Get Started

By signing up, you agree to our Terms of Use and Privacy Policy.

EDUCBA
Free Data Science Course

Hadoop, Data Science, Statistics & others

*Please provide your correct email id. Login details for this Free course will be emailed to you

By signing up, you agree to our Terms of Use and Privacy Policy.

EDUCBA
Free Data Science Course

Hadoop, Data Science, Statistics & others

*Please provide your correct email id. Login details for this Free course will be emailed to you

By signing up, you agree to our Terms of Use and Privacy Policy.

Loading . . .
Quiz
Question:

Answer:

Quiz Result
Total QuestionsCorrect AnswersWrong AnswersPercentage

Explore 1000+ varieties of Mock tests View more

Special Offer - Machine Learning Training Learn More