EDUCBA

EDUCBA

MENUMENU
  • Free Tutorials
  • Free Courses
  • Certification Courses
  • 360+ Courses All in One Bundle
  • Login

Naive Bayes vs Logistic Regression

Home » Data Science » Data Science Tutorials » Head to Head Differences Tutorial » Naive Bayes vs Logistic Regression

Naive Bayes vs Logistic Regression

Difference Between Naive Bayes vs Logistic Regression

The following article provides an outline for Naive Bayes vs Logistic Regression. An algorithm where Bayes theorem is applied along with few assumptions such as independent attributes along with the class so that it is the most simple Bayesian algorithm while combining with Kernel density calculation is called Naive Bayes algorithm. We can scale Naive Bayes based on our requirements. Probability of certain behavior or class based on the available data is determined with the help of regression analysis otherwise called Logistic regression. The data is predicted and the relationship between given data is explained with the help of logistic data.

Head to Head Comparison Between Naive Bayes vs Logistic Regression (Infographics)

Below are the top 5 differences between Naive Bayes vs Logistic Regression:

Start Your Free Data Science Course

Hadoop, Data Science, Statistics & others

Naive-Bayes-vs-Logistic-Regression-info

Key Difference Between Naive Bayes vs Logistic Regression

Let us discuss some of the major key differences between Naive Bayes vs Logistic Regression:

  • When we have correlated features for both Naive Bayes and logistic regression, correlation happens with labels by making predictions so that when the labels are repeating, there are more chances for making the repetitive features the prominent ones in the Naive Bayes algorithm. This will not happen in Logistic regression as the repeating features are counted less number times making it compensate with the repetition. There is no optimization in Naïve Bayes making it to calculate the entries of features directly. But we cannot add different features for the same problem here.
  • Naive bayes calculates directly from the features aiming in more perfection but gives poor results if the features are more. It does not consider the calibrations and if there are dependency in the features, it will consider that and add into the feature making it more prominent. If the feature is giving negative impact, this will give poor results. This is not a problem in Logistic regression as calibration of the features happen on time when the features are added more number of times giving exact results. Naïve bayes individually counts the classes and gives result based on the more number of feature count in a particular class. The classes are separated in Logistic regression making it to identify the prominent feature based on calibration.
  • Naive Bayes is mostly used to classify text data. For example, to identify whether the mailbox has spam, this algorithm can be used to find spam emails based on some terms within the mail. Email text is taken as input where there are no dependent features to be considered. Linear combination of inputs is considered to give binary output where features to be dependent or independent is not considered as a point to classify the data.
  • The error is higher in Naive Bayes making it a grave mistake if the classification is done on a small amount of data and if there are dependent features which were ignored while doing the algorithmic calculation. Hence, Naïve Bayes is not a go-to solution always for any classification problems. The error is less in Logistic regression where we can find the answers easily for dependent or independent features with large data.
  • Training data is directly taken into consideration while making assumptions in Logistic regression. Training data is not considered directly but a small sample is taken in Naïve Bayes classification. Logistic regression discriminates the target value for any input values given and can be considered as a discriminative classifier. All the attributes are accounted for in the Naive Bayes algorithm.

Naive Bayes vs Logistic Regression Comparison Table

Let’s discuss the top comparison between Naive Bayes vs Logistic Regression:

Naive Bayes Classification Logistic Regression
Classification method based on Bayes theorem where the probability of a feature is calculated with the given attributes and independence of each feature is considered to be prominent to calculate the predominant feature within the classification. This gives the name Naive to the Bayes classification. Probability of a sample is considered from a class and linear classification is done on the same based on the probability. This is by far finding the decision boundary between two or more classes and their samples so that the classes can be separated based on their behavior.
This is a generative model where feature A is targeted to target B so that the probability between both can be calculated using the theorem P(b|a). This explains whether A has happened whenever B has occurred so that the classification can be done easily. This is a discriminative model where probability is calculated directly by mapping A to B or B to A so that we can know whether B has occurred at a certain interval of time owing to A.
All the features are considered to be independent so that classification happens in a generated manner. If any of the features are correlated, the classification will not happen in an expected way. The features are split in a linear fashion so that even if the features are correlated, due to linear classification, logistic regression works in favor of data analysis and gives better results than Naive Bayes.
When the total data considered is small or the sample data is less, we can do better classification based on the number of features helping in good probabilities of the data even before the data analysis. This helps indirectly in forming the forecasting in markets helping the analysts to get the prominent feature. Less data is not in favor of Logistic regression as the result will be a more generalized model with the available features. Overfitting will be reduced with the help of regression techniques but the result will not be as expected and analysis will not help in understanding the data.
Naive Bayes has a higher bias and low variance. Results are analyzed to know the data generation making it easier to predict with less variables and less data. Naive bayes give a faster solution for few training sets while considering independent features. Logistic regression has low bias and higher variance. Functional form indirect manner is used to predict the probability with categorical and continuous variables making the result set to be categorical. When there are more classes, multi-class logistic regression is used for data analysis.

Conclusion

Both the classifiers work in a similar fashion but the assumptions considered along with the number of features differ. We can do both the classifications on the same data and check the output and know the way how data performs with both the classification. These are the two most common statistic models used in machine learning.

Recommended Articles

This is a guide to Naive Bayes vs Logistic Regression. Here we discuss key differences with infographics and comparison table respectively. You may also have a look at the following articles to learn more –

  1. Artificial Intelligence vs Business Intelligence
  2. Regression vs Classification
  3. R vs R Squared
  4. Pig vs Spark

All in One Data Science Bundle (360+ Courses, 50+ projects)

Popular Course in this category
Sale
Data Scientist Training (85 Courses, 67+ Projects)85 Online Courses | 67 Hands-on Projects | 660+ Hours | Verifiable Certificate of Completion | Lifetime Access
4.8 (13,403 ratings)
Course Price

View Course

Related Courses
Tableau Training (5 Courses, 8+ Projects)Azure Training (6 Courses, 5 Projects, 4 Quizzes)Hadoop Training Program (20 Courses, 14+ Projects, 4 Quizzes)Data Visualization Training (15 Courses, 5+ Projects)All in One Data Science Bundle (360+ Courses, 50+ projects)

360+ Online Courses

50+ projects

1500+ Hours

Verifiable Certificates

Lifetime Access

Learn More

0 Shares
Share
Tweet
Share
Primary Sidebar
Head to Head Differences Tutorial
  • Differences Tutorial
    • ArangoDB vs MongoDB
    • Cloud Computing vs Big Data Analytics
    • PostgreSQL vs MariaDB
    • Domo vs Tableau
    • Data Scientist vs Data Engineer vs Statistician
    • Big Data Vs Machine Learning
    • Business Intelligence vs Data Warehouse
    • Apache Kafka vs Flume
    • Data Science vs Machine Learning
    • Business Analytics Vs Predictive Analytics
    • Data mining vs Web mining
    • Data Science Vs Data Mining
    • Data Science Vs Business Analytics
    • Analyst vs Associate
    • Apache Hive vs Apache Spark SQL
    • Apache Nifi vs Apache Spark
    • Apache Spark vs Apache Flink
    • Apache Storm vs Kafka
    • Artificial Intelligence vs Business Intelligence
    • Artificial Intelligence vs Human Intelligence
    • Al vs ML vs Deep Learning
    • Assembly Language vs Machine Language
    • AWS vs AZURE
    • AWS vs Azure vs Google Cloud
    • Big Data vs Data Mining
    • Big Data vs Data Science
    • Big Data vs Data Warehouse
    • Blu-Ray vs DVD
    • Business Intelligence vs Big Data
    • Business Intelligence vs Business Analytics
    • Business Intelligence vs Data analytics
    • Business Intelligence VS Data Mining
    • Business Intelligence vs Machine Learning
    • Business Process Re-Engineering vs CI
    • Cassandra vs Elasticsearch
    • Cassandra vs Redis
    • Cloud Computing Public vs Private
    • Cloud Computing vs Fog Computing
    • Cloud Computing vs Grid Computing
    • Cloud Computing vs Hadoop
    • Computer Network vs Data Communication
    • Computer Science vs Data Science
    • Computer Scientist vs Data Scientist
    • Customer Analytics vs Web Analytics
    • Data Analyst vs Data Scientist
    • Data Analytics vs Business Analytics
    • Data Analytics vs Data Analysis
    • Data Analytics Vs Predictive Analytics
    • Data Lake vs Data Warehouse
    • Data Mining Vs Data Visualization
    • Data mining vs Machine learning
    • Data Mining Vs Statistics
    • Data Mining vs Text Mining
    • Data Science vs Artificial Intelligence
    • Data science vs Business intelligence
    • Data Science Vs Data Engineering
    • Data Science vs Data Visualization
    • Data Science vs Software Engineering
    • Data Scientist vs Big Data
    • Data Scientist vs Business Analyst
    • Data Scientist vs Data Engineer
    • Data Scientist vs Data Mining
    • Data Scientist vs Machine Learning
    • Data Scientist vs Software Engineer
    • Data visualisation vs Data analytics
    • Data vs Information
    • Data Warehouse vs Data Mart
    • Data Warehouse vs Database
    • Data Warehouse vs Hadoop
    • Data Warehousing VS Data Mining
    • DBMS vs RDBMS
    • Deep Learning vs Machine learning
    • Digital Analytics vs Digital Marketing
    • Digital Ocean vs AWS
    • DOS vs Windows
    • ETL vs ELT
    • Small Data Vs Big Data
    • Apache Hadoop vs Apache Storm
    • Hadoop vs HBase
    • Between Data Science vs Web Development
    • Hadoop vs MapReduce
    • Hadoop Vs SQL
    • Google Analytics vs Mixpanel
    • Google Analytics Vs Piwik
    • Google Cloud vs AWS
    • Hadoop vs Apache Spark
    • Hadoop vs Cassandra
    • Hadoop vs Elasticsearch
    • Hadoop vs Hive
    • Hadoop vs MongoDB
    • HADOOP vs RDBMS
    • Hadoop vs Spark
    • Hadoop vs Splunk
    • Hadoop vs SQL Performance
    • Hadoop vs Teradata
    • HBase vs HDFS
    • Hive VS HUE
    • Hive vs Impala
    • JDBC vs ODBC
    • Kafka vs Kinesis
    • Kafka vs Spark
    • Cloud Computing vs Data Analytics
    • Data Mining Vs Data Analysis
    • Data Science vs Statistics
    • Big Data Vs Predictive Analytics
    • MapReduce vs Yarn
    • Hadoop vs Redshift
    • Looker vs Tableau
    • Machine Learning vs Artificial Intelligence
    • Machine Learning vs Neural Network
    • Machine Learning vs Predictive Analytics
    • Machine Learning vs Predictive Modelling
    • Machine Learning vs Statistics
    • MariaDB vs MySQL
    • Mathematica vs Matlab
    • Matlab vs Octave
    • MATLAB vs R
    • MongoDB vs Cassandra
    • MongoDB vs DynamoDB
    • MongoDB vs HBase
    • MongoDB vs Oracle
    • MongoDB vs Postgres
    • MongoDB vs PostgreSQL
    • MongoDB vs SQL
    • MongoDB vs SQL server
    • MS SQL vs MYSQL
    • MySQL vs MongoDB
    • MySQL vs MySQLi
    • MySQL vs NoSQL
    • MySQL vs SQL Server
    • MySQL vs SQLite
    • Neural Networks vs Deep Learning
    • PIG vs MapReduce
    • Pig vs Spark
    • PL SQL vs SQL
    • Power BI Dashboard vs Report
    • Power BI vs Excel
    • Power BI vs QlikView
    • Power BI vs SSRS
    • Power BI vs Tableau
    • Power BI vs Tableau vs Qlik
    • PowerShell vs Bash
    • PowerShell vs CMD
    • PowerShell vs Command Prompt
    • PowerShell vs Python
    • Predictive Analysis vs Forecasting
    • Predictive Analytics vs Data Mining
    • Predictive Analytics vs Data Science
    • Predictive Analytics vs Descriptive Analytics
    • Predictive Analytics vs Statistics
    • Predictive Modeling vs Predictive Analytics
    • Private Cloud vs Public Cloud
    • Regression vs ANOVA
    • Regression vs Classification
    • ROLAP vs MOLAP
    • ROLAP vs MOLAP vs HOLAP
    • Spark SQL vs Presto
    • Splunk vs Elastic Search
    • Splunk vs Nagios
    • Splunk vs Spark
    • Splunk vs Tableau
    • Spring Cloud vs Spring Boot
    • Spring vs Hibernate
    • Spring vs Spring Boot
    • Spring vs Struts
    • SQL Server vs PostgreSQL
    • Sqoop vs Flume
    • Statistics vs Machine learning
    • Supervised Learning vs Deep Learning
    • Supervised Learning vs Reinforcement Learning
    • Supervised Learning vs Unsupervised Learning
    • Tableau vs Domo
    • Tableau vs Microstrategy
    • Tableau vs Power BI vs QlikView
    • Tableau vs QlikView
    • Tableau vs Spotfire
    • Talend Vs Informatica PowerCenter
    • Talend vs Mulesoft
    • Talend vs Pentaho
    • Talend vs SSIS
    • TensorFlow vs Caffe
    • Tensorflow vs Pytorch
    • TensorFlow vs Spark
    • TeraData vs Oracle
    • Text Mining vs Natural Language Processing
    • Text Mining vs Text Analytics
    • Cloud Computing vs Virtualization
    • Unit Test vs Integration Test?
    • Universal analytics vs Google Analytics
    • Visual Analytics vs Tableau
    • R vs Python
    • R vs SPSS
    • Star Schema vs Snowflake Schema
    • DDL vs DML
    • R vs R Squared
    • ActiveMQ vs Kafka
    • TDM vs FDM
    • Linear Regression vs Logistic Regression
    • Slf4j vs Log4j
    • Redis vs Kafka
    • Travis vs Jenkins
    • Fact Table vs Dimension Table
    • OLTP vs OLAP
    • Openstack vs Virtualization
    • Cluster v/s Factor analysis
    • Informatica vs Datastage
    • CCBA vs CBAP
    • SPSS vs EXCEL
    • Excel vs Tableau
    • Cassandra vs MySQL
    • RabbitMQ vs Kafka
    • SAAS vs Cloud
    • RabbitMQ vs Redis
    • AMQP vs MQTT
    • Forward Chaining vs Backward Chaining
    • Google Data Studio vs Tableau
    • ActiveMQ vs RabbitMQ
    • Cloud vs Data Center
    • Cores vs Threads
    • Inner Join vs Outer Join
    • ZeroMQ vs Kafka
    • Mxnet vs TensorFlow
    • Datadog vs Splunk
    • Redis vs Memcached
    • RDBMS vs NoSQL
    • AWS Direct Connect vs VPN
    • Cassandra vs Couchbase
    • Elegoo vs Arduino
    • Redis vs MongoDB
    • Chef vs Puppet
    • GSM vs GPRS
    • Keras vs TensorFlow vs PyTorch
    • Cloudflare vs CloudFront
    • Bitmap vs Vector
    • Left Join vs Right Join
    • IaaS vs PaaS
    • Blue Prism vs UiPath
    • GNSS vs GPS
    • Cloudflare vs Akamai
    • GCP vs AWS vs Azure
    • Arduino Mega vs Uno
    • Qualitative vs Quantitative Data
    • Arduino Micro vs Nano
    • PIC vs Arduino
    • PRTG vs Solarwinds
    • PostgreSQL vs SQLite
    • Metabase vs Tableau
    • Arduino Leonardo vs Uno
    • Arduino Due vs Mega
    • ETL Vs Database Testing
    • DBMS vs File System
    • CouchDB vs MongoDB
    • Arduino Nano vs Mini
    • IaaS vs PaaS vs SaaS
    • On-premise vs off-premise
    • Couchbase vs CouchDB
    • Tableau Dimension vs Measure
    • Cognos vs Tableau
    • Data vs Metadata
    • RethinkDB vs MongoDB
    • Cloudera vs Snowflake
    • HBase vs Cassandra
    • Business Analytics vs Business Intelligence
    • R Programming vs Python
    • MongoDB vs Hadoop
    • MySQL vs Oracle
    • OData vs GraphQL
    • Soft Computing vs Hard Computing
    • Binary Tree vs Binary Search Tree
    • Datadog vs CloudWatch
    • B tree vs Binary tree
    • Cloudera vs Hortonworks
    • DevSecOps vs DevOps
    • PostgreSQL Varchar vs Text
    • PostgreSQL Database vs schema
    • MapReduce vs spark
    • Hypervisor vs Docker
    • SciLab vs Octave
    • DocumentDB vs DynamoDB
    • PostgreSQL union vs union all
    • OrientDB vs Neo4j
    • Data visualization vs Business Intelligence
    • QlikView vs Qlik Sense
    • Neo4j vs MongoDB
    • Postgres Schema vs Database
    • Mxnet vs Pytorch
    • Naive Bayes vs Logistic Regression
    • Random Forest vs Decision Tree
    • Random Forest vs XGBoost
    • DynamoDB vs Cassandra
    • Looker vs Power BI
    • PostgreSQL vs RedShift
    • Presto vs Hive
    • Random forest vs Gradient boosting
    • Gradient boosting vs AdaBoost
    • Amazon rds vs Redshift
    • Bigquery vs Bigtable
    • Data Architect vs Data Engineer
    • DataSet vs DataTable
    • dataset vs dataframe
    • Dataset vs Database
    • New Relic vs Splunk
    • Data Architect and Management Designer
    • Data Engineer vs Data Analyst
    • Grafana vs Tableau
    • MySQL text vs Varchar
    • Relational Database vs Flat File
    • Datadog vs Prometheus
    • Neo4j vs Neptune
    • Data Mining vs Data warehousing
    • DocumentDB vs MongoDB
    • PostScript vs PCL
    • QRadar vs Splunk
    • Qlik Sense vs Tableau
    • DigitalOcean vs Google Cloud
    • PostgreSQL vs Elasticsearch

Related Courses

Online Data Science Course

Online Tableau Training

Azure Training Course

Hadoop Certification Course

Data Visualization Courses

All in One Data Science Course

Footer
About Us
  • Blog
  • Who is EDUCBA?
  • Sign Up
  • Live Classes
  • Corporate Training
  • Certificate from Top Institutions
  • Contact Us
  • Verifiable Certificate
  • Reviews
  • Terms and Conditions
  • Privacy Policy
  •  
Apps
  • iPhone & iPad
  • Android
Resources
  • Free Courses
  • Database Management
  • Machine Learning
  • All Tutorials
Certification Courses
  • All Courses
  • Data Science Course - All in One Bundle
  • Machine Learning Course
  • Hadoop Certification Training
  • Cloud Computing Training Course
  • R Programming Course
  • AWS Training Course
  • SAS Training Course

© 2022 - EDUCBA. ALL RIGHTS RESERVED. THE CERTIFICATION NAMES ARE THE TRADEMARKS OF THEIR RESPECTIVE OWNERS.

EDUCBA
Free Data Science Course

Hadoop, Data Science, Statistics & others

*Please provide your correct email id. Login details for this Free course will be emailed to you

By signing up, you agree to our Terms of Use and Privacy Policy.

EDUCBA
Free Data Science Course

Hadoop, Data Science, Statistics & others

*Please provide your correct email id. Login details for this Free course will be emailed to you

By signing up, you agree to our Terms of Use and Privacy Policy.

Let’s Get Started

By signing up, you agree to our Terms of Use and Privacy Policy.

Loading . . .
Quiz
Question:

Answer:

Quiz Result
Total QuestionsCorrect AnswersWrong AnswersPercentage

Explore 1000+ varieties of Mock tests View more

EDUCBA Login

Forgot Password?

By signing up, you agree to our Terms of Use and Privacy Policy.

This website or its third-party tools use cookies, which are necessary to its functioning and required to achieve the purposes illustrated in the cookie policy. By closing this banner, scrolling this page, clicking a link or continuing to browse otherwise, you agree to our Privacy Policy

EDUCBA

*Please provide your correct email id. Login details for this Free course will be emailed to you

By signing up, you agree to our Terms of Use and Privacy Policy.

Special Offer - Online Data Science Course Learn More